COMPOUND INTEREST APPLICATIONS

1	(a)	The price of a book increases from \$2.50 to \$2.65.	
		Calculate the percentage increase.	
		%	[3]
	(b)	Scott invests \$500 for 7 years at a rate of 1.5% per year simple interest.	
		Calculate the value of his investment at the end of the 7 years.	
		\$	[3]
	(c)	In a city the population is increasing exponentially at a rate of 1.6% per year.	
		Find the overall percentage increase at the end of 20 years.	
		0/	[2]
	(I)		[2]
	(d)	The population of a village is 6400. The population is decreasing exponentially at a rate of $r\%$ per year. After 22 years, the population will be 2607.	
		Find the value of r .	
		$r = \dots$	[3]

MARKING SCHEME:

(a)	6 nfww	3	M2 for $\frac{2.65 - 2.50}{2.50} [\times 100]$ or for $\frac{2.65}{2.50} \times 100$ or M1 for $\frac{2.65}{2.50}$
(b)	552.5[0]	3	B2 for 52.5[0] or M2 for $500 \times \frac{1.5}{100} \times 7 + 500$ oe or M1 for $500 \times \frac{1.5}{100}$ [× 7] oe
(c)	37.4 or 37.36	2	M1 for $\left(1 + \frac{1.6}{100}\right)^{20}$ oe soi 1.37
(d)	4[.00]	3	M2 for $\sqrt[22]{\frac{2607}{6400}}$ or M1 for $6400 \times x^{22} = 2607$ oe or better

(a)	(i)	Divide \$105 in the ratio 4:3.			
			\$	and \$	[2]
	(ii)	Increase \$105 by 12%.			
			\$		[2]
	(iii)	In a sale the original price of a jacket is reduced by 16% to	\$105.		
		Calculate the original price of the jacket.			
			\$		[3]
(b)		ob invests \$500 at a rate of 2% per year compound interest. udia invests \$500 at a rate of 2.5% per year simple interest.			
		culate the difference between these two investments after 30 re your answer in dollars correct to the nearest cent.	years.		

(c)	Michel invests \$ <i>P</i> at a rate of 3.8% per year compound interest. After 30 years the value of this investment is \$1469.
	Calculate the value of P .
	<i>P</i> =[3]
(d)	The population of a city increases exponentially at a rate of $x\%$ every 5 years. In 1960 the population was 60 100. In 2015 the population was 120 150.
	Calculate the value of x .
	$x = \dots [3]$

MARKING SCHEME:

	,		
(a) (i)	60 and 45	2	M1 for 105 ÷ (4+3)
(ii)	117.6[0] final answer	2	M1 for 105×1.12 oe
(iii)	125	3	M2 for $105 \div (1 - \frac{16}{100})$ oe or M1 for 105 seen associated with 84%
(b)	30.68 final answer	6	B5 for 30.7[0] or 30.68 or B4 for 905 to 906 and 875 or 405 to 406 and 375 OR M1 for $500 \times \left(1 + \frac{2}{100}\right)^{30} [-500]$ oe M1 for $[500 +] \frac{500 \times 2.5 \times 30}{100}$
(c)	480 or 479.8 to 479.9	3	B1 for 905 to 906 or 875 or 405 to 406 or 375 M2 for 1469 ÷ $\left(1 + \frac{3.8}{100}\right)^{30}$ oe or M1 for $P \times \left(1 + \frac{3.8}{100}\right)^{30} = 1469$ oe
(d)	6.5[0] or 6.500	3	(100) M2 for $\sqrt[11]{\frac{120150}{60100}} [\times 100 - 100]$ oe or M1 for $60100 \times ()^n = 120150$ oe where $n = 5$ or 11 or 55