BOND ENERGY CALCULATIONS

 ${\bf 1}$ Gaseous phosphorus(III) chloride, PC $l_{\rm 3}$, reacts with gaseous chlorine to form gaseous phosphorus(V) chloride, PC $l_{\rm 5}$.

$$PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$$

The chemical equation for this reaction can be represented as shown.

$$Cl \longrightarrow Cl + Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow Cl$$

(i) Use the bond energies in the table to calculate the energy change, in kJ/mol, of the reaction.

bond	bond energy in kJ/mol
P-Cl	326
Cl-Cl	243

• Energy needed to break bonds.

	kJ
•	Energy released when bonds are formed.
	kJ

• Energy change of reaction.

	energy change =kJ/mol [3]
(ii)	Deduce whether the energy change for this reaction is exothermic or endothermic. Explain your answer.

MARKING SCHEME:

(i)	method 1	3
	 (bond breaking) = 1221 or (326 × 3) + 243 (1) (bond forming) = 1630 or (326 × 5) (1) energy change = −409 kJ (1) negative sign essential 	
	OR	
	method 2 (ignoring 3 P–Cl bonds on both sides) ∞ bond breaking = 243 .(1) ∞ bond forming = 652 or 326 × 2 (1) ∞ energy change = -409 kJ (1) negative sign essential	
(ii)	exothermic AND energy released when bonds form is greater than energy absorbed to break bonds	1
	OR exothermic AND overall energy change has a negative sign	

7

The equation for the complete combustion of ethanol is shown.

Use the bond energies in the table to calculate the energy change, in kJ/mol, for the complete combustion of ethanol.

bond	bond energy in kJ/mol
C–C	347
C–H	413
C-O	358
C=O	805
О–Н	464
O=O	498

• Energy needed to break bonds.

..... kJ

• Energy released when bonds are formed.

.....kJ

• Energy change for the complete combustion of ethanol.

MARKING SCHEME:

(energy to break bonds) = 4728 (1) (energy released by making bonds) = 6004 (1) –1276 (1)	3