FUNCTIONS-SET-3-QP-MS

(i) Sketch on the same diagram the graphs of y = |2x+3| and y = 1-x. [3]

1

(ii) Find the values of x for which x + |2x + 3| = 1. [3]

(i) 9=1=0	y = 2x+3 -ve then +ve slope Vertex at (-h,0) y = 1 - x	B1 DB1	Must be 2 parts – ignore -2 to -1 V shape-Vertex on -ve x-axis + lines
y=124+3/A	y – 1 – x Line, -ve m, (k,0)	B1 [3]	-ve slope, crosses axes at x,y +ve – allow if only in 1 st or 2 nd quadrants
(ii) $x + 2x + 3 = 1$ –	→ $x = -\frac{2}{3}$ (-0.65 to -0.70)	B1	From graph, or calculation or guess
x - (2x+3) = 1 —		M1 AI [3]	B2 if correct. M mark for any method. Squares both sides M1 quadratic A1 Answers A1

The function f is defined, for $0^{\circ} \le x \le 360^{\circ}$, by

$$f(x) = a \sin(bx) + c,$$

where a, b and c are positive integers. Given that the amplitude of f is 2 and the period of f is 120° ,

(i) state the value of a and of b. [2]

Given further that the minimum value of f is -1,

- (ii) state the value of c, [1]
- (iii) sketch the graph of f. [3]

. x = asin(bx)+c			
(i) a = 2 and b = 3		B1 B1	Wrong way round - no marks. No labels - allow B1 if both correct.
(ii) c = 1		B1	Co
(iii)	3 cycles (0 to 360) -1 to 3	B1 B1	Even if starting incorrectly. Needs to be marked - allow for any trig graph.
NAA	Period 120° + all correct.	DB1	Everything in relatively correct position - needs both B's
-1-V-V-V	4	[6	6]

Ш

where *A* and *B* are constants.

(i)	Given that the maximum value of f is 3, state the value of A.	[1]
(ii)	State the amplitude of f.	[1]
(iii)	Given that the period of f is 120° , state the value of <i>B</i> .	[1]
(iv)	Sketch the graph of f.	[3]

f(x) = $A + 5\cos Bx$ (i) $A = -2$ (ii) Amplitude = 5 (iii) $B = 3$ (iv) Range 3 to -7	B1 B1 B1 B1	CAO CAO CAO -3 to 7 implied somewhere – table ok – even if no graph
³ 0 -7	B2,1 [6]	Needs 1½ oscillations – over-rides rest. √ on 3 and –7 Start at max – finishes at second min. Curves – but be tolerant

Given that each of the following functions is defined for the domain $-2 \le x \le 3$, find the range of

(i) $f: x \mapsto 2 - 3x$,	[1]
(ii) $g: x \mapsto 2-3x ,$	[2]

(iii) $h: x \mapsto 2 - |3x|$. [2]

State which of the functions f, g and h has an inverse.

4

[2]

(i) $-7 \le f(x) \le 8$ (i) $0 \le g(x) \le 8$ (ii) $-7 \le h(x) \le 2$	B1CAOAllow < for ≤	
fyes gno hno	B2,1Loses one for each wrong decision (answer f on its own – allow B2)	ı.

The function f is defined, for $0^{\circ} \le x \le 180^{\circ}$, by

$$\mathbf{f}(x) = 3\mathbf{\cos}\,4x - 1.$$

(i)	Solve the equation $f(x) = 0$.	[3]
(ii)	State the amplitude of f.	[1]
(iii)	State the period of f.	[1]
(iv)	State the maximum and minimum values of f.	[2]
(v)	Sketch the graph of $y = f(x)$.	[3]

$\mathbf{f}(\mathbf{x}) = 3\mathbf{\cos}4\mathbf{x} - 1.$		
(i) $\cos 4x = \frac{1}{3}$ (base angle = 70.53) 4x=70.53 or 289.47 or 430.53 or 649.47	M 1	cos4x subject then ÷ by 4
	A1	One pair correct.
$x = 17.6^{\circ}$ or 72.4° or 107.6° or 162.4°	A1√	Other pair correct to first answers.
	[3]	
(ii) amplitude = 3	B1	Co
(iii) period = 90° or $\frac{1}{2\pi}$	B1	Co
(iv) maximum value = $3-1=2$	B1	Co
minimum value = $-3 - 1 = -4$	B1	Co
	[4] B1 B1√ B1 [3]	 2 complete cycles Max "amp -1" Min "-amp-1" Starts and finishes correctly

- (a) Functions f and g are defined, for $x \in \mathbb{R}$, by
- 6

$$f(x) = 3 - x,$$

$$g(x) = \frac{x}{x+2}, \text{ where } x \neq -2.$$

(i) Find fg(x).

(ii) Hence find the value of x for which fg(x) = 10. [2]

(b) A function h is defined, for
$$x \in \mathbb{R}$$
, by $h(x) = 4 + \ln x$, where $x > 1$.

- (i) Find the range of h. [1]
- (ii) Find the value of $h^{-1}(9)$. [2]

(iii) On the same axes, sketch the graphs of
$$y = h(x)$$
 and $y = h^{-1}(x)$. [3]

[2]

(a) (i) $fg(x) = f\left(\frac{x}{x+2}\right)$	M1		M1 for order
$=3-\frac{x}{x+2}$	A1	[2]	
(ii) $3 - \frac{x}{x+2} = 10$ leading to $x = -1.75$	DM1 A1	[2]	DM1 for dealing with fractions sensibly
(b) (i) $h(x) > 4$ (ii) $h^{-1}(x) = e^{x-4}$ $h^{-1}(9) = e^{5}$ (≈ 148) or $4 + \ln x = 9$, leading to $x = e^{5}$	M1	[1]	M1 for attempting to obtain inverse function
(iii) correct graphs	B1 B1 B1	[3]	B1 for each curve B1 for idea of symmetry

The function f is defined, for $0^{\circ} \le x \le 360^{\circ}$, by $f'(x) = 4 - \cos 2x$.[2](i) State the amplitude and period of f.[2](ii) Sketch the graph of f, stating the coordinates of the maximum points.[4]

$f(x) = 4 - \cos 2x$					
(i) amplitude = \pm 1. Period = 180° or π	B1B1	Independent of graph. Do not allow "4 to 5".			
(ii) 5 3 90 180 270 360 x	B2,1	Must be two complete cycles. 0/2 if not. Needs 3 to 5 marked or implied. Needs to start and finish at minimum. Needs curve not lines.			
Max (90°, 5) and (270°, 5)	B1B1 [6]	Independent of graph (90, 270 gets B1). Allow radians or degrees.			

(b) (i) State the amplitude of $1 - 4\sin 2x$.

(ii) State the period of $5 \tan 3x + 1$.

[1]

[1]

[3]

