FUNCTIONS-SET-3-QP-MS

1
(i) Sketch on the same diagram the graphs of,$=|2 x+3|$ and $y=1-x$.
(ii) Find the values of x for which $x+|2 x+3|=1$.

MARKING SCHEME

The function f is defined, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$, by

$$
\mathrm{f}(x)=a \sin (b x)+c,
$$

where a, b and c are positive integers. Given that the amplitude of f is 2 and the period of f is 120°,
(i) state the value of a and of b.

Given further that the minimum value of f is -1 ,
(ii) state the value of c,
(iii) sketch the graph of f.

MARKING SCHEME

The function f is defined, for $0^{\circ} \leqslant x \leqslant 180^{\circ}$, by

$$
\mathrm{f}(x)=A+5 \cos B x,
$$

where A and B are constants.
(i) Given that the maximum value of f is 3 , state the value of A.
(ii) State the amplitude of f .
(iii) Given that the period of f is 120°, state the value of B.
(iv) Sketch the graph of f .

MARKING SCHEME

$\mathrm{f}(x)=A+5 \cos B x$ (i) $A=-2$	B1	CAO
(ii) Amplitude $=5$	B1	CAO
(iii) $B=3$	B1	CAO
(iv) Range 3 to -7	B1	-3 to 7 implied somewhere - table ok - even if no graph
	B2,1 ${ }^{\text {B }}$	Needs $11 / 2$ oscillations - over-rides rest. $\sqrt{ }$ on 3 and -7 Start at max - finishes at second min. Curves - but be tolerant

Given that each of the following functions is defined for the domain $-2 \leqslant x \leqslant 3$, find the range of
4
(i) $\mathrm{f}: x \mapsto 2-3 x$,
(ii) $\mathrm{g}: x \mapsto|2-3 x|$,
(iii) $\mathrm{h}: x \mapsto 2-|3 x|$.

State which of the functions f, g and h has an inverse.

MARKING SCHEME

(i)	$-7 \leq f(x) \leq 8$		B1	CAO Allow < for \leq
(i)	$0 \leq \mathrm{g}(\mathrm{x}) \leq 8$		B1 B1	CAO As above
(ii)	$-7 \leq h(x) \leq 2$		B1 B1	CAO As above
f yes	g no	h no	B2,1 [7]	Loses one for each wrong decision. (answer f on its own - allow B2)

The function f is defined, for $0^{\circ} \leqslant x \leqslant 180^{\circ}$, by

$$
\mathrm{f}(x)=3 \cos 4 x-1
$$

(i) Solve the equation $\mathrm{f}(x)=0$.
(ii) State the amplitude of f .
(iii) State the period of f .
(iv) State the maximum and minimum values of f .
(v) Sketch the graph of $y=\mathrm{f}(x)$.

MARKING SCHEME

(a) Functions f and g are defined, for $x \in \mathbb{R}$, by

$$
\begin{aligned}
& \mathrm{f}(x)=3-x, \\
& \mathrm{~g}(x)=\frac{x}{x+2}, \quad \text { where } x \neq-2 .
\end{aligned}
$$

(i) Find $\operatorname{fg}(x)$.
(ii) Hence find the value of x for which $\operatorname{fg}(x)=10$.
(b) A function h is defined, for $x \in \mathbb{R}$, by $\mathrm{h}(x)=4+\ln x$, where $x>1$.
(i) Find the range of h.
(ii) Find the value of $\mathrm{h}^{-1}(9)$.
(iii) On the same axes, sketch the graphs of $y=\mathrm{h}(x)$ and $y=\mathrm{h}^{-1}(x)$.
(a) (i) $\operatorname{fg}(x)=\mathrm{f}\left(\frac{x}{x+2}\right)$

$$
=3-\frac{x}{x+2}
$$

(ii) $3-\frac{x}{x+2}=10$
leading to $x=-1.75$
(b) (i) $\mathrm{h}(x)>4$
(ii) $\mathrm{h}^{-1}(x)=\mathrm{e}^{x-4}$
$h^{-1}(9)=\mathrm{e}^{5} \quad(\approx 148)$
or $4+\ln x=9$,
leading to $x=\mathrm{e}^{5}$
(iii) correct graphs
[3]

M1 for order

DM1 for dealing with fractions sensibly

M1 for attempting to obtain inverse function

B1 for each curve

B1 for idea of symmetry

The function f is defined, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$, by ${ }^{\mathrm{c}}(x)=4-\cos 2 x$.
(i) State the amplitude and period of f.
(ii) Sketch the graph of f , stating the coordinates of the maximum points.

MARKING SCHEME

(a) On the axes below, sketch the curve $y=3 \cos 2 x-1$ for $0^{\circ} \leqslant x \leqslant 180^{\circ}$.

(b) (i) State the amplitude of $1-4 \sin 2 x$.
(ii) State the period of $5 \tan 3 x+1$.

MARKING SCHEME

