0478 and 0984(9-1) COMPUTER SCIENCE TOPIC QUESTIONS SET-2 SMART EXAM RESOURCES

Unit 1.1 Number Systems

Unit 1.1 Number Systems

- 1. A denary value can be converted into hexadecimal and binary.
- (a) Complete the table to show the hexadecimal and 8-bit binary values of the given denary values.

Denary	Hexadecimal	8-bit binary
49		
123		
200		

Working space	
	i
	ı
	ı
[6]	
(b) Give two benefits, to users, of converting binary values to hexadecimal.	
Benefit 1	
Benefit 2	[2]
(c) Hexadecimal is used to represent Hypertext Markup Language (HTML) colour codes in computer science.	
Identify three other ways that hexadecimal is used in computer science.	
1	
2	
	01

2. (a) Denary values are converted to binary values to be processed by a computer. Draw one line from each denary value to the correctly converted 8-bit binary value.[3]

	Denary	8-bit binary	
		00100001	
]	_
	41	10100110	
		00101001	
	174		
		10000110	
			_
	86	10101110	
		I	_
		01010110	
Working	space		
Give		to denary values. 12-bit binary value 000101010111	
Snov	v all your working.		
Denary v	/alue	[2]	ĺ

3.	Hexadecimal is u		• •	Markup I	_anguag	e (HTML)) colour c	odes.	
	An HTML colour) hit va ai	-1 u			
(a) (Each pair of digits Give the 8-bit binar			•	_		hexadec	imal digit	S.
()									
	2F								
	15								
			ı	<u> </u>	ı		ı	I	
	D6								
			1	1	ı		1	1	[6]
Wor	king space								
	imig opaco								
	HTML colour code				•) address	ses are tw	o examp	les of
(Give two other ex	amples o	f where h	nexadecir	mal can l	be used i	n Compu	ter Scien	ce.
Exa	mple 1								
Exa	mple 2								[2]

1	An agranland has a sr	nall dienlay ecroor	ahove each seat to	display the seat number.
4.	An aeropiane nas a si	iali display screet	i above each seat, it	i dispiay the seat number.

The seat number is a hexadecimal value. A 12-bit binary register is used to store the data to display each seat number.

Three seat numbers, 05A, 18C and 29F, are allocated to passengers.

Give the 12-bit binary value that would be stored for each hexadecimal seat number.

05A	
18C	
29F	
Working space	[6]

Give the hexadecimal seat number that would be displayed on the screen for each of these binary values.

Two of the registers store the values 010000001101 and 000001111110

5.

000001101	
0001111110	
orking space	[4]

6.	The values in the MAC address are hexadecimal values. Convert the three given hexadecimal values into 8-bit binary.
	14
	A0
	C9[3
Wo	rking space