

Characteristics of pure substances:

• Pure substances have sharp melting and boiling points. Example: Boiling point of pure water is $100^{\circ}C$ while melting point of pure ice is $0^{\circ}C$.

Effect of impurities on "pure substances":

- Due to the presence of impurities, the melting and the boiling points will not be sharp any more. Substances will melt and boil over a range of temperatures.
- The boiling point will be increased further due to the presence of impurities. Example: Impure water will boil above $100^{\circ}C$.
- The greater the impurity, the greater will be the increase in the boiling point.
- The melting point is decreased by impurities. So impure ice will not melt at $0^{\circ}C$ but will melt at a lower temperature

Graphs of pure and impure substances

- 1. Graphs of pure substances show horizontal regions which represent the melting points and boiling points of substances.
- 2. These temperatures are described as sharp/ fixed / specific temperatures.[2m]

Graphs of pure substances :

Have Regions[1]m

Region where the solids melts(Example region BC)

Region where the liquid boils (Example: Region DE) And

• The solid melts and the liquids boils at a fixed or a specific temperature [1m]

		-	٠			
П	0	•	٠	n	0	•
\mathbf{L}		. 1	п	ш	4	

- Melting point: It is the temperature at which a solid changes into a liquid.
- Boiling point: It is the temperature at which a liquid changes into a gas.

Naming the test for purity of substances:

The following are the tests to check the purity of substances:

- Testing for the melting points and boiling points of substances.
- Performing chromatography and checking the purity of substances

Application based questions: Extended Theory

[M/J/2015-V-62-Q3]

- 3 Three bottles of liquid have lost their labels. The liquids are known to be:
 - · aqueous potassium hydroxide,
 - octane,
 - pure water.

Outline tests you would do to identify and distinguish the liquid in each bottle.

liquid		test	result	
pure water		XOON		

Look at the marking scheme below: It tells you that you need to be able to mention the melting and boiling points of pure water.

pure water boiling point/melting point; 100°C/0°C:

[M/J/2009-v32-Q1 a (ii)]

(ii) Given a pure sample of chlorophyll, how could you show that the green solution from the grass contained chlorophyll?

[2]

Application based questions: Extended MCQ

Skill 1:Identify methods of testing purity of substances

[M/J/2003-Q3]

3 Some chemical compounds are purified by recrystallisation.

What can be used to test the purity of the crystals?

- A melting point
- B colour of crystals
- C size of crystals
- D solubility

[M/J/2003-Q4]

4 What could be the melting point and boiling point of water containing a dissolved impurity?

	melting point / °C	boiling point / °C	
Α	+3	96	
В	+3	104	
С	- 3	96	
D -3		104	

al N

The diagram shows the paper chromatograms of four substances, W, X, Y and Z.

Which two substances are pure?

- A W and X
- B WandY C X and Y
- D X and Z

Extended theory: Testing Purity-Graphical questions

[O/N/2005-P3- Q2a(ii)]

- 2 Ethanoic acid is a colourless liquid at room temperature. It has the typical acid properties and forms compounds called ethanoates.
 - (a) A pure sample of ethanoic acid is slowly heated from 0°C to 150°C and its temperature is measured every minute. The results are represented on the graph below.

(ii) What would be the difference in the region B to C if an impure sample had been used?

[1]

[O/N/2012-V32-Q2]

2 The diagram shows a heating curve for a sample of compound X.

(d) Explain how the curve shows that a pure sample of compound X was used.

	[2]