SMART EXAM RESOURCES
 0580 EXTENDED MATH
 TOPIC: NUMBERS SUB-TOPIC: WRITING IN STANDARD FORM SET-1-QP-MS

1
Javed says that his eyes will blink 415000000 times in 79 years.
(a) Write 415000000 in standard form.

Answer (a)

MARK SCHEME:
a) 4.15×10^{8} final answer cao
b) 10 cao

2 In 1950, the population of Switzerland was 4714900.
In 2000, the population was 7087000 .
(a) Work out the percentage increase in the population from 1950 to 2000.
Answer (a)... \% [2]
(b) (i) Write the 1950 population correct to 3 significant figures.
Answer (b)(i)
(ii) Write the 2000 population in standard form.
Answer (b)(ii).

MARK SCHEME:

15 (a)	50.3	2	M1 for $\frac{(7087000-4714900)}{4714900}$ o.e. must be recognisable complete correct method
(b) (i)	4710000 or 4.71×10^{6}	1	
(ii)	7.087×10^{6}	1	accept 7.09×10^{6}, ignore superfluous zeros

(a) Write this area correct to 1 significant figure.

$$
\text { Answer(a) ... } \mathrm{km}^{2}[1]
$$

(b) Write your answer to part (a) in standard form.

$$
\text { Answer(b) ... } \mathrm{km}^{2} \text { [1] }
$$

MARK SCHEME:

(a)	80000	1	8×10^{4}
(b)	8×10^{4}	1 V	

A block of cheese, of mass 8 kilograms, is cut by a machine into 500 equal slices.
(a) Calculate the mass of one slice of cheese in kilograms.

> Answer (a) ... kg [1]
(b) Write your answer to part (a) in standard form.

> Answer (b)
kg [1]

MARK SCHEME:

| (a) | 0.016 | 1 | Allow 2/125 |
| :--- | :--- | :--- | :--- | :--- |
| (b) | 1.6×10^{-2} | $1 \sqrt{ }$ | $\times 10$ essential |

The planet Neptune is 4496000000 kilometres from the Sun. Write this distance in standard form.

Answer ... km [1]

MARK SCHEME:

| 4.496×10^{9} | 1 | |
| :--- | :--- | :--- | :--- |

6
(a) Use your calculator to work out

$$
\frac{1-\left(\tan 40^{\circ}\right)^{2}}{2\left(\tan 40^{\circ}\right)}
$$

Answer(a)

(b) Write your answer to part (a) in standard form.
Answer(b)

MARK SCHEME:

(a) 0.176 (b) 1.76×10^{-1}	1	
$1 \sqrt{ }$	ft their answer to (a)	

(a) Calculate the area of the beach $A B C D$ in square metres.

Answer(a) $\mathrm{m}^{2} \quad[3]$
(b) The beach area is covered in sand to a depth of 1.8 m .

Calculate the volume of the sand in cubic metres.

> Answer(b)
\qquad
(c) Write both the following answers in standard form.
(i) Change your answer to part(b) into cubic millimetres.

> Answer(c)(i)
$\mathrm{mm}^{3} \quad[1]$
(ii) Each grain of sand has a volume of $2 \mathrm{~mm}^{3}$ correct to the nearest mm^{3}.

Calculate the maximum possible number of grains of sand on the beach.

MARK SCHEME:
(a) 12900
(b) 23300
(c) (i) 2.33×10^{13}
(ii) 1.55×10^{13}
M1 $\left(160^{2}\right.$ or $\left.100^{2}\right) \times \pi \times 95 / 360$
M1 subtracting the two areas above
(a) multiplied by 1.8
(b) $\times 10^{9}$
1 V
M1 (c)(i) / 1.5
(a) There are 10^{9} nanoseconds in 1 second. Find the number of nanoseconds in 5 minutes, giving your answer in standard form.

> Answer(a)

MARK SCHEME:
(a) $3 \times 10^{11} \quad 2 \quad$ M1 $60 \times 5 \times 10^{9}$ or better
(a) There are 10^{9} nanoseconds in 1 second. Find the number of nanoseconds in 8 minutes, giving your answer in standard form.

> Answer(a)
[2]

MARK SCHEME:

(a)	3×10^{11}	2	M1 $60 \times 5 \times 10^{9}$ or better

10 Calculate the value of $5\left(6 \times 10^{3}+400\right)$, giving your answer in standard form.

MARK SCHEME:

	$3.2(0) \times 10^{4}$	2	B1 32000 or $32 \times 10^{3} \mathrm{etc}$

11 Change 64 square metres into square millimetres.
Give your answer in standard form.

Answer

\qquad mm^{2}

MARK SCHEME:

6.4×10^{7}	2	M1 $64 \times 100^{2} \times 10^{2}$ or 64000000 oe

