SMART EXAM RESOURCES

0580 EXTENDED MATH

TOPIC: NUMBERS

SUB-TOPIC: WRITING IN STANDARD FORM

SET-1-QP-MS

- 1 Javed says that his eyes will blink 415 000 000 times in 79 years.
 - (a) Write 415 000 000 in standard form.

a) 4.15×108 final answer cao	·B1	
b)10 cao	B1	2

- In 1950, the population of Switzerland was 4 714 900. In 2000, the population was 7 087 000.
 - (a) Work out the percentage increase in the population from 1950 to 2000.

(b) (i) Write the 1950 population correct to 3 significant figures.

(ii) Write the 2000 population in standard form.

MARK SCHEME:

15 (a)	50.3	2	M1 for $\frac{(7087000-4714900)}{4714900}$ o.e. must be recognisable complete correct method
(b) (i)	4710000 or 4.71 × 10 ⁶	1	
(ii)	7.087×10^6	1	accept 7.09 × 10 ⁶ , ignore superfluous zeros

The area of a small country is 78 133 square kilometres.

(a) Write this area correct to 1 significant figure.

Answer(a)	km ² [1	1

(b) Write your answer to part (a) in standard form.

(a)	80000	1	8 x 10 ⁴
	8×10^4	1 √	

A block of cheese, of mass 8 kilograms, is cut by a machine into 500 equal slices.

(a) Calculate the mass of one slice of cheese in kilograms.

Answer (a) kg [1]

(b) Write your answer to part (a) in standard form.

Answer (b) kg [1]

MARK SCHEME:

11111									
	(a)	0.016	1	Allow 2/125					
	(b)	1.6 × 10 ⁻²	1√	x 10 essential					

The planet Neptune is $4496\,000\,000$ kilometres from the Sun. Write this distance in standard form.

Answer	km	Г1	
Answer	KIII	1	L

MARK SCHEME:

4.496 x 10 ⁹	1	

6 (a) Use your calculator to work out

$$\frac{1-(\tan 40^\circ)^2}{2(\tan 40^\circ)}$$

Answer(a) [1]

(b) Write your answer to part (a) in standard form.

Answer(b) [1]

(a) 0.176 (b) 1.76 x 10 ⁻¹	1	ft their answer to (a)	
(b) 1110 x 10	3.3	it their answer to (a)	

The shaded area shows a beach.

AD and BC are circular arcs, centre O.

 $OB = 160 \,\text{m}$, $OD = 100 \,\text{m}$ and angle $AOD = 95^{\circ}$.

NOT TO SCALE

(a) Calculate the area of the beach ABCD in square metres.

Answer(a)	 m^2	[3]
\ /		_

(b) The beach area is covered in sand to a depth of 1.8 m.

Calculate the volume of the sand in cubic metres.

Answer(b)
$$m^3$$
 [1]

- (c) Write both the following answers in standard form.
 - (i) Change your answer to part(b) into cubic millimetres.

$$Answer(c)(i) mm3 [1]$$

(ii) Each grain of sand has a volume of 2 mm³ correct to the nearest mm³.

Calculate the maximum possible number of grains of sand on the beach.

$$Answer(c)(ii)$$
 [2]

(a)	12900	3	M1 $(160^2 \text{ or } 100^2) \times \pi \times 95/360$ M1 subtracting the two areas above
(b)	23300	1√	(a) multiplied by 1.8
(c)	(i) 2.33×10^{13} (ii) 1.55×10^{13}	1√ 2√	(b) $\times 10^9$ M1 (c)(i) / 1.5

(a) There are 10⁹ nanoseconds in 1 second.

Find the number of nanoseconds in 5 minutes, giving your answer in standard form.

Answer(a) [2]

MARK SCHEME:

WIAN	WARR SCHEWE.								
(a)	3×10^{11}	2	M1 $60 \times 5 \times 10^9$ or better						

(a) There are 10⁹ nanoseconds in 1 second. Find the number of nanoseconds in 8 minutes, giving your answer in standard form.

Answer(a) [2]

MARK SCHEME

(a)	3×10^{11}	2	M1 $60 \times 5 \times 10^9$ or better

Calculate the value of $5(6 \times 10^3 + 400)$, giving your answer in standard form.

Answer [2]

$3.2(0) \times 10^4$ 2 B1 32000 or 32 × 10 ³ etc			` ′
	$3.2(0) \times 10^4$	2	B1 32000 or 32×10^3 etc

11	Change 64 square metres into square millimetres.
I I	Give your answer in standard form.

1711	LA	I	
	6.4×10^7	2	M1 $64 \times 100^2 \times 10^2$ or $64\ 000\ 000$ oe