Fig. 2.1 shows a hollow metal cylinder containing air, floating in the sea.

Fig. 2.1

(a)	The density of the metal used to make the cylinder is greater than the density of seawate	∍r.
	Explain why the cylinder floats.	
		ſ,

(b) The cylinder has a length of 1.8 m. It floats with 1.2 m submerged in the sea. The bottom of the cylinder has an area of cross-section of 0.80 m².

The density of seawater is $1020 \, kg/m^3$. Calculate the force exerted on the bottom of the cylinder due to the depth of the seawater.

	force =[4]
)	Deduce the weight of the cylinder. Explain your answer.
	weight =
	explanation
	[2]
	t <u>−</u> 1

[Total: 7]

MARKING SCHEME:

(a)	average/overall/combined density (of the metal and air contained) less (than density of sea water)	1
(b)	$(P =) h \times \rho \times g$ OR $(V =) A \times l$ in any form	1
	$(P=1.2\times1020\times10=)\ 12\ 000\ (Pa)\ \textbf{OR}\ (V=0.8\times1.2=)\ 0.96\ (m^3)$	1
	$P = F + A \text{ OR } (F =) P \times A \text{ OR } (W =) V \times \rho \times g$	1
	$(F = 12240 \times 0.80 =) 9800 \text{ N } \mathbf{OR} (F = W =) 9800 \text{ N}$	1
!(c)	same numerical answer as (b)	1
	resultant/net (vertical) force = 0 OR downward force = upward force OR forces are balanced	1