FUNCTIONS-SET-7-QP-MS

On the axes below, sketch the graph of y = |(x-2)(x+1)(x+2)| showing the coordinates of the points where the curve meets the axes. [3]

1	\ 1 /	B1	Shape
		B 1	Correct x-coordinates
	3 3 0 1	B1	Correct y-coordinate and max in first quadrant

3

(a) On the axes below, sketch the graph of

(b) Given that $y = 4 \sin 6x$, write down

(i) the amplitude of y, [1]

(ii) the period of y. [1]

(a)		В3	B1 for 2 cycles, one max and 2 min points in the correct places and up to a max at each end B1 for going between 2 and -4 B1 for starting at (0,2) and finishing at (360,2)
(b)(i)	4	B1	
(b)(ii)	60° or $\frac{\pi}{3}$	B1	

(i) Write
$${}^{2}x$$
 $x - 9 + 8$

in the form
$$(x-p)^{-2}$$
 q, where p and q are constants.

[2]

(ii) Hence write down the coordinates of the minimum point on the curve
$$y = x^2 - 9x + 8$$
. [1]

(iii) On the axes below, sketch the graph of $y = |x^2 - 9x + 8|$, showing the coordinates of the points where the curve meets the coordinate axes.

[3]

[1]

(iv) Write down the value of k for which
$$|x^2 - 9x + 8| = k$$
 has exactly 3 solutions.

(i)	$\left(x-\frac{9}{2}\right)^2-\frac{49}{4}$	B2	B1 for $\frac{9}{2}$ or $\frac{49}{4}$
(ii)	$\left(\frac{9}{2}, -\frac{49}{4}\right)$	B1	FT their p and q
(iii)		В3	B1 for shape B1 for cusps at (1, 0) and (8, 0) B1 for all correct, passing through (0, 8) with maximum in correct position
(iv)	49 4	B1	FT their q

(i) On the axes below, sketch the graph of y = -6.3, showing the coordinates of the points where the graph meets the coordinate axes.

(ii) Solve
$$|6-3x|=2$$
. [3]

(iii) Hence find the values of x for which
$$|6-3x| > 2$$
. [1]

(i)		В2	B1 for correct shape with vertex at (2,0) Dep B1 for passing through or starting at (0,6)
(ii)	Either $6-3x=2$ $x = \frac{4}{3}$	B1	For $x = \frac{4}{3}$
	6-3x = -2	M1	For considering – 2
	$x = \frac{8}{3}$	A1	69.
	$\mathbf{Or} \ 9x^2 - 36x + 32 = 0$	M1	For squaring each side and attempt to solve a 3 term quadratic = 0
	$x = \frac{4}{3}$	A1	
	$x = \frac{8}{3}$	A1	
(iii)	$x < \frac{4}{3}, x > \frac{8}{3}$	B1	FT on their solutions in part (ii), must both be positive and written as 2 separate statements

6

(i) On the axes below, sketch the graph of

coy

$$x = -$$

s2

1 for
$$-90$$
 $x \le$

0

[3]

(ii) Write down the amplitude of
$$2\cos 3x - 1$$
.

[1]

(iii) Write down the period of
$$2\cos 3x - 1$$
.

[1]

(i)		В3	B1 for y intercept $(0,1)$, must have a graph B1 for starting and finishing at $(\pm 90,-1)$ B1 for all correct, must be attempt at a curve passing through $(\pm 30,-1)$ and $(\pm 60,-3)$
(ii)	2	B1	
(iii)	120° or $\frac{2\pi}{3}$	B1	

7

(i) On the axes below, sketch the graph of $y = 5\cos 4x - 3$ for $-90^{\circ} \le x \le 90^{\circ}$.

[4]

(ii) Write down the amplitude of y.

[1]

(iii) Write down the period of y.

[1]

(i)	40 45 0 45 90 rd	В4	B1 for a maximum at $(0, 2)$ B1 for minimums at $y = -8$ and no other minimums B1 for starting at $(-90^{\circ}, 2)$ and finishing at $(90^{\circ}, 2)$ B1 for a fully correct curve with correct shape, particularly at end points, that has earned all three previous B marks.
(ii)	5	B1	
(iii)	90°	B1	26.

- **(b)** Write down the period of $1+4\cos\left(\frac{x}{3}\right)$. [1]
- (c) On the axes below, sketch the graph of $y = 1 + 4\cos\left(\frac{x}{3}\right)$ for $-180^{\circ} \le x^{\circ} \le 180^{\circ}$.

[3]

(a)	4	B1	
(b)	1080° or 6π	B1	
(c)	W 0 4 6 8 D H	3	B1 for shape, it must be symmetrical about the y-axis. B1 for y-intercept of 5 B1 for (±180°,3)