RATIO

(a) The angles of a triangle are in the ratio 2 : 3 : 5.

- (i) Show that the triangle is right-angled.
- (ii) The length of the hypotenuse of the triangle is 12 cm.

Use trigonometry to calculate the length of the shortest side of this triangle.

[1]

- (b) The sides of a different right-angled triangle are in the ratio 3 : 4 : 5.
 - (i) The length of the shortest side is 7.8 cm.Calculate the length of the longest side.

(ii) Calculate the smallest angle in this triangle.

.....[3]

(a)(i)	$180 \div (2+3+5) \times 5 [= 90]$	1	with no errors seen
(a)(ii)	7.05 or 7.053	3	M2 for $\frac{x}{12} = \sin 36$ oe or better or B1 for 36 or 54 seen
.(b)(i)	13	2	M1 for 7.8 ÷ 3 soi
(b)(ii)	36.9 or 36.86 to 36.87	3	B1 for smallest angle identified M1 for sin[] = $\frac{3}{5}$ oe or sin[] = $\frac{7.8}{their (\mathbf{b})(\mathbf{i})}$ oe If zero scored, SC1 for calculation of 53.1

Marianne sells photos.

- (a) The selling price of each photo is \$6.
 - (i) The selling price for each photo is made up of two parts, printing cost and profit. For each photo, the ratio printing cost : profit = 5 : 3.

Calculate the profit she makes on each photo.

- (ii) Calculate her profit as a percentage of the selling price.
-% [1]

(iii) Calculate the selling price of a photo in euros (\in) when the exchange rate is $\in 1 = \$1.091$.

€.....[2]

 (b) Marianne sells two sizes of photo. These photos are mathematically similar rectangles. The smaller photo has length 15 cm and width 12 cm. The larger photo has area 352.8 cm².

Calculate the length of the larger photo.

(c) In a sale, Marianne buys a new camera for \$483. This is a reduction of 8% on the original price.

Calculate the original price of the camera.

(a)(i)	2.25 final answer	2	M1 for $\frac{3}{5+3}$ or $\frac{6}{5+3}$ oe
(a)(ii)	37.5	1	FT their $\frac{(a)(i)}{6} \times 100$
(a)(iii)	5.5[0] or 5.499 to 5.500	2	M1 for 6 ÷ 1.091
(b)	21	3	M2 for $15 \times \sqrt{\frac{352.8}{15 \times 12}}$ oe or SC2 for answer 16.8 or M1 for $\sqrt{\frac{352.8}{15 \times 12}}$ or $\sqrt{\frac{15 \times 12}{352.8}}$ seen or M1 for a correct implicit statement for the length
(c)	525	3	M2 for $\frac{483}{100-8}$ [×100] oe or M1 for 483 associated with 92 [%]

- (a) The Muller family are on holiday in New Zealand.
 - (i) They change some euros (\in) and receive \$1962 (New Zealand dollars). The exchange rate is $\in 1 = 1.635 .

Calculate the number of euros they change.

(ii) The family spend 15% of their New Zealand dollars on a tour.

Calculate the number of dollars they have left.

\$[2]

€[2]

(iii) The family visit two waterfalls, the Humboldt Falls and the Bridal Veil Falls. The ratio of the heights Humboldt Falls : Bridal Veil Falls = 5 : 1. The Humboldt Falls are 220 m higher than the Bridal Veil Falls.

Calculate the height of the Humboldt Falls.

.....m [2]

(b) (i) Water flows over the Browne Falls at a rate of 3680 litres per second. After rain, this rate increases to 9752 litres per second.

Calculate the percentage increase in this rate.

This is an increase of 45% on the rate before the rain.

(ii) After rain, water flows over the Sutherland Falls at a rate of 74240 litres per second.

Calculate the rate before the rain.

..... litres/second [3]

(a)(i)	1200	2	M1 for 1962 ÷ 1.635
(a)(ii)	1667.7[0] final answer	2	M1 for $1962 \times (1 - \frac{15}{100})$ oe or B1 for 294.3[0] If 0 scored, SC1 for answer 1020
(a)(iii)	275	2	M1 for 220 ÷ <i>their</i> (5 – 1) soi
b(i)	165	3	M2 for $\frac{9752 - 3680}{3680} [\times 100]$ oe or $\frac{9752}{3680} \times 100$ oe or M1 for $\frac{9752}{3680}$ or $9752 - 3680$
b(ii)	51200	3	M2 for $\frac{74240}{100+45}$ [×100] oe or M1 for 74 240 associated with 145[%] oe

- (a) A school has 240 students. The ratio girls : boys = 25 : 23.
 - (i) Show that the number of boys is 115.
 - (ii) One day, there are 15 girls absent and 15 boys absent.

Find the ratio girls : boys in school on this day. Give your answer in its simplest form.

[1]

(iii) Next year, the number of students will increase by 15%.

Calculate the number of students next year.

(iv) Since the school was opened, the number of students has increased by 60%. There are now 240 students.

Calculate the number of students when the school was opened.

.....[3]

(b) The population of a city is increasing exponentially at a rate of 2% each year. The population now is 256000.

Calculate the population after 30 years. Give your answer correct to the nearest thousand.

.....[3]

(c) A bacteria population increases exponentially at a rate of r% each day. After 32 days, the population has increased by 309%.

Find the value of *r*.

r =[3]

(a)(i)	$\frac{240}{(23+25)} \times 23$	M1	
(a)(ii)	11:10	2	M1 for 110:100 or better or SC1 for 10:11, following boys 100, girls 110
(a)(iii)	276	2	M1 for $240 \times \left(1 + \frac{15}{100}\right)$ oe or B1 for 36 seen
(a)(iv)	150	3	M2 for $\frac{240}{100+60}$ [× 100] oe or M1 for evidence of 160[%] associated 240
(b)	464000	3	M1 for $256000 \times \left(1 + \frac{2}{100}\right)^{30}$ oe A1 for 463 700 to 463 710 B1 for <i>their</i> more accurate answer seen and rounded to nearest 1000
(c)	4.5[0]	3	M2 for $[x =] \sqrt[32]{4.09}$ oe or M1 for $(x)^{32} = 4.09$ oe If 0 scored, SC2 for answer 3.6 or 3.59 or 3.588 or SC1 for $\sqrt[32]{3.09}$ or 1.0358 to 1.036 seen

5 (a) Ali and Mo share a sum of money in the ratio Ali : Mo = 9 : 7. Ali receives \$600 more than Mo.

Calculate how much each receives.

		Ali \$	<u> </u>
		Mo \$	
(b)	In a sale, Ali buys a television for \$195.80. The original price was \$220.		
	Calculate the percentage reduction on the original price.		
(c)	In the sale, Mo buys a jacket for \$63.		
	The original price was reduced by 25%.		
	Calculate the original price of the jacket.		

\$[3]

(a)	[Ali] 2700 [Mo] 2100	B2 for one correct or for correct values reversed or M1 for $600 \div (9 - 7)$ or for any equation that would lead to an answer of 300, 2700 or 2100, or 4800 (for the total)
(b)	11	M2 for $\frac{220 - 195.8}{220}$ [×100] or for $[100 -]\frac{195.8}{220} \times 100$ or M1 for 220 - 195.8 or for $\frac{195.8}{220}$ or a correct implicit equation for percentage reduction or for $\frac{195.8 - 220}{220}$
(c)	84	M2 for $\frac{63}{1-\frac{25}{100}}$ oe or M1 for associating 63 with $(100 - 25)\%$ or a correct implicit equation for the original price.