RATIO

(a) The angles of a triangle are in the ratio $2: 3: 5$.
(i) Show that the triangle is right-angled.
(ii) The length of the hypotenuse of the triangle is 12 cm .

Use trigonometry to calculate the length of the shortest side of this triangle.
(b) The sides of a different right-angled triangle are in the ratio $3: 4: 5$.
(i) The length of the shortest side is 7.8 cm .

Calculate the length of the longest side.
(ii) Calculate the smallest angle in this triangle.

MARKING SCHEME:
\(\left.\left.$$
\begin{array}{|l|l|r|l|}\hline \text { (a)(i) } & 180 \div(2+3+5) \times 5[=90] & \mathbf{1} & \text { with no errors seen } \\
\hline \text { (a)(ii) } & 7.05 \text { or } 7.053 \ldots & \mathbf{3} & \begin{array}{l}\text { M2 for } \frac{x}{12}=\sin 36 \text { oe or better } \\
\text { or } \mathbf{B 1} \text { for } 36 \text { or } 54 \text { seen }\end{array} \\
\hline \text { (b)(i) } & 13 & \mathbf{2} & \text { M1 for } 7.8 \div 3 \text { soi }\end{array}
$$ \right\rvert\, \begin{array}{lll|}\hline B1 for smallest angle identified

M1 for \sin []=\frac{3}{5} oe

or \sin []=\frac{7.8}{their(\mathbf{b})(\mathbf{i})} oe

If zero scored, \mathbf{S C 1} for calculation of 53.1\end{array}\right\}\)| 36.9 or 36.86 to 36.87 |
| :--- |

(a) The selling price of each photo is $\$ 6$.
(i) The selling price for each photo is made up of two parts, printing cost and profit.

For each photo, the ratio printing cost : profit $=5: 3$.
Calculate the profit she makes on each photo.
\$
(ii) Calculate her profit as a percentage of the selling price.
\qquad
(iii) Calculate the selling price of a photo in euros $(€)$ when the exchange rate is $€ 1=\$ 1.091$.
$€$
(b) Marianne sells two sizes of photo.

These photos are mathematically similar rectangles.
The smaller photo has length 15 cm and width 12 cm .
The larger photo has area $352.8 \mathrm{~cm}^{2}$.
Calculate the length of the larger photo.
(c) In a sale, Marianne buys a new camera for $\$ 483$.

This is a reduction of 8% on the original price.
Calculate the original price of the camera.

MARKING SCHEME:

(a)(i)	2.25 final answer	2	M1 for $\frac{3}{5+3}$ or $\frac{6}{5+3}$ oe
(a)(ii)	37.5	1	$\text { FT their } \frac{(\mathbf{a})(\mathbf{i})}{6} \times 100$
(a)(iii)	$5.5[0]$ or 5.499 to 5.500	2	M1 for $6 \div 1.091$
(b)	21	3	M2 for $15 \times \sqrt{\frac{352.8}{15 \times 12}}$ oe or SC2 for answer 16.8 or M1 for $\sqrt{\frac{352.8}{15 \times 12}}$ or $\sqrt{\frac{15 \times 12}{352.8}}$ seen or M1 for a correct implicit statement for the length
(c)	525	3	M2 for $\frac{483}{100-8}[\times 100]$ oe or M1 for 483 associated with 92 [\%]

(a) The Muller family are on holiday in New Zealand.
(i) They change some euros ($€$) and receive $\$ 1962$ (New Zealand dollars).

The exchange rate is $€ 1=\$ 1.635$.
Calculate the number of euros they change.

$$
€ .
$$

(ii) The family spend 15% of their New Zealand dollars on a tour.

Calculate the number of dollars they have left.

$$
\$
$$

(iii) The family visit two waterfalls, the Humboldt Falls and the Bridal Veil Falls.

The ratio of the heights Humboldt Falls : Bridal Veil Falls $=5: 1$.
The Humboldt Falls are 220 m higher than the Bridal Veil Falls.
Calculate the height of the Humboldt Falls.
(b) (i) Water flows over the Browne Falls at a rate of 3680 litres per second. After rain, this rate increases to 9752 litres per second.

Calculate the percentage increase in this rate.
\% [3]
(ii) After rain, water flows over the Sutherland Falls at a rate of 74240 litres per second. This is an increase of 45% on the rate before the rain.

Calculate the rate before the rain.

MARKING SCHEME:

(a)(i)	1200	2	M1 for $1962 \div 1.635$
(a)(ii)	1667.7[0] final answer	2	M1 for $1962 \times\left(1-\frac{15}{100}\right)$ oe or B1 for 294.3[0] If 0 scored, SC1 for answer 1020
(a)(iii)	275	2	M1 for $220 \div$ their $(5-1)$ soi
b (i)	165	3	M2 for $\frac{9752-3680}{3680}[\times 100]$ oe or $\frac{9752}{3680} \times 100$ oe or M1 for $\frac{9752}{3680}$ or $9752-3680$
b(ii)	51200	3	M2 for $\frac{74240}{100+45}[\times 100]$ oe or M1 for 74240 associated with 145[\%] oe

(a) A school has 240 students.

The ratio girls: boys $=25: 23$.
(i) Show that the number of boys is 115 .
(ii) One day, there are 15 girls absent and 15 boys absent.

Find the ratio girls : boys in school on this day. Give your answer in its simplest form.
\qquad
:
(iii) Next year, the number of students will increase by 15%.

Calculate the number of students next year.
(iv) Since the school was opened, the number of students has increased by 60%.

There are now 240 students.
Calculate the number of students when the school was opened.
(b) The population of a city is increasing exponentially at a rate of 2% each year. The population now is 256000 .

Calculate the population after 30 years.
Give your answer correct to the nearest thousand.
(c) A bacteria population increases exponentially at a rate of $r \%$ each day.

After 32 days, the population has increased by 309%.
Find the value of r.

$$
r=
$$

MARKING SCHEMEI

(a)(i)	$\frac{240}{(23+25)} \times 23$	M1	
(a)(ii)	11:10	2	M1 for 110:100 or better or SC1 for $10: 11$, following boys 100 , girls 110
(a)(iii)	276	2	M1 for $240 \times\left(1+\frac{15}{100}\right)$ oe or B1 for 36 seen
(a)(iv)	150	3	M2 for $\frac{240}{100+60}[\times 100]$ oe or M1 for evidence of 160[\%] associated 240
(b)	464000	3	M1 for $256000 \times\left(1+\frac{2}{100}\right)^{30}$ oe A1 for 463700 to 463710 B1 for their more accurate answer seen and rounded to nearest 1000
(c)	4.5[0]	3	M2 for $[x=] \sqrt[32]{4.09}$ oe or M1 for $(x)^{32}=4.09$ oe If 0 scored, SC2 for answer 3.6 or 3.59 or 3.588... or $\mathbf{S C 1}$ for $\sqrt[32]{3.09}$ or 1.0358 to 1.036 seen

(a) Ali and Mo share a sum of money in the ratio Ali : $\mathrm{Mo}=9: 7$. Ali receives $\$ 600$ more than Mo.

Calculate how much each receives.

Ali \$ \qquad

Mo \$
(b) In a sale, Ali buys a television for $\$ 195.80$.

The original price was $\$ 220$.
Calculate the percentage reduction on the original price.
(c) In the sale, Mo buys a jacket for $\$ 63$.

The original price was reduced by 25%.
Calculate the original price of the jacket.

MARKING SCHEME:

(a)	[Ali] 2700 $[\mathrm{Mo}] 2100$	$\mathbf{3}$	B2 for one correct or for correct values reversed or M1 for $600 \div(9-7)$ or for any equation that would lead to an answer of 300,2700 or 2100 , or 4800 (for the total)
(b)	11	$\mathbf{3}$	M2 for $\frac{220-195.8}{220}[\times 100]$ or for $[100-] \frac{195.8}{220} \times 100$ or M1 for $220-195.8$ or for $\frac{195.8}{220}$ or a correct implicit equation for percentage reduction or for $\frac{195.8-220}{220}$
(c)	84	$\mathbf{3}$	M2 for $\frac{63}{1-\frac{25}{100} \text { oe }}$ or M1 for associating 63 with $(100-25) \%$ or a correct implicit equation for the original price.

