A student is investigating the position of a sheet of card that is hanging from a pivot. Fig. 2.1 shows the apparatus drawn full size.

Fig. 2.1

(a) On Fig. 2.1 measure the distance *d* between the centre of the hole labelled 1 and the edge of the card at **A**. Record this value in the table.

hole	d/mm	<i>h</i> /mm	b/mm
1		140	
2		135	
3		132	
4		128	
5		124	
6		120	_(0

[3]

- (b) Repeat step (a) for each of the remaining holes 2-6.
- (c) On Fig. 2.1 measure the height h_0 of the pointer above the bench.

$$h_0 = \dots$$
 [1]

- (d) A student hangs a 10 g mass from the hole 1 in the card. She records the height *h* of the end of the pointer above the bench. She then repeats this procedure by hanging the mass from each hole in turn. Her results are shown in the table above.
- (e) Calculate the differences in heights b using the equation

$$b = (h - h_0)$$

and record the results in the table above.

(f) Plot the graph of b/mm(y-axis) against d/mm(x-axis).

(g) The student suggests that *b* is directly proportional to *d*. By reference to your graph, state whether or not the results support the student's suggestion. Give a reason for your answer.

tatement	
eason	
	[2]
	[-]

(h) It is important when recording the heights that the rule is vertical. State briefly how you would check that the rule is vertical.

[1]

[Total: 11]

4
[1] [1]
[1]
[1]
[1] [2] [1]
[1]
[1]
[Total: 11]