FUNCTIONS-SET-1-QP-MS

The function f is defined, for $0^{\circ} \le x \le 360^{\circ}$, by $\hat{x}(x) = 4 - \cos 2x$.	
(i) State the amplitude and period of f.	[2]
(ii) Sketch the graph of f, stating the coordinates of the maximum points.	[4]

1

$f(x) = 4 - \cos 2x$		
(i) amplitude = \pm 1. Period = 180° or π	B1B1	Independent of graph. Do not allow "4 to 5".
(ii) 5 3 90 180 270 360 x	B2,1	Must be two complete cycles. 0/2 if not. Needs 3 to 5 marked or implied. Needs to start and finish at minimum. Needs curve not lines.
Max (90°, 5) and (270°, 5)	B1B1 [6]	Independent of graph (90, 270 gets B1). Allow radians or degrees.

2

Given that each of the following functions is defined for the domain $-2 \le x \le 3$, find the range of

- (i) $f: x \mapsto 2 3x$, [1]
- (ii) $g: x \mapsto |2 3x|,$ [2]
- (iii) $h: x \mapsto 2 |3x|$. [2]

State which of the functions f, g and h has an inverse.

[2]

(i) $-7 \le f(x) \le 8$ (i) $0 \le g(x) \le 8$ (ii) $-7 \le h(x) \le 2$	B1CAOAllow < for ≤
fyes gno hno	B2,1 Loses one for each wrong decision. (answer f on its own – allow B2)

- (a) The function f is such that $f(x) = 2x^2 8x + 5$.
 - (i) Show that $f(x) = 2(x + a)^2 + b$, where *a* and *b* are to be found. [2]

(ii) Hence, or otherwise, write down a suitable domain for f so that f^{-1} exists. [1]

(b) The functions g and h are defined respectively by

$$g(x) = x^2 + 4$$
, $x \ge 0$, $h(x) = 4x - 25$, $x \ge 0$.

(i) Write down the range of g and of h^{-1} . [2]

(ii) On the axes below, sketch the graphs of y = g(x) and $y = g^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes. [3]

(iii) Find the value of x for which gh(x) = 85.

(i) $2(x-2)^2 - 3$	B1B1	B1 for -2, B1 for -3
(ii) $x \ge 2$ or equivalent	√B1	on their '-2'
(b) (i) $g(x) \ge 4$, $h^{-1}(x) \ge 0$	B1B1	B1 for each
(ii) Correct sketch	B1 B1 B1	B1 for $g(x)$ B1 for $g^{-1}(x)$ B1 for idea of symmetry
(iii) $g(4x-25) = 85$	M1	M1 for correct order
$(4x-25)^2+4=85$	DM1	DM1 for attempt to solve
$x = \frac{17}{2}, x = 4$	A1	A1 for both
Discarding $x = 4$	B1 [12]	B1 for discarding $x = 4$

It is given that	$f(x) = 3e^{2x} \text{for } x \ge 0,$
	$g(x) = (x+2)^2 + 5$ for $x \ge 0$.

(i) Write down the range of f and of g.

4

[2]

(ii) Find g^{-1} , stating its domain.

[3]

(iii) Find the exact solution of gf(x) = 41.

[4]

(iv) Evaluate $f'(\ln 4)$.

(i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1	
(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to obtain the inverse function
	$g^{-1}(x) = -2 + \sqrt{x-5}$ Domain of g^{-1} : $x \ge 9$	A1 B1	Must be correct form for domain
	Alternative method: $y^2 + 4y + 9 - x = 0$	M1	attempt to use quadratic formula and find inverse
	$y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	A1	must have + not \pm
(iii)	Need $g(3e^{2x})$	M1	correct order
	$(3e^{2x}+2)^2+5=41$	DM1	correct attempt to solve the equation
	or $9e^{4x} + 12e^{2x} - 32 = 0$ $(3e^{2x} - 4)(3e^{2x} + 8) = 0$		
	leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2} \ln \frac{4}{3}$	M1	dealing with the exponential correctly in order to reach a solution for x
	or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$	A1	Allow equivalent logarithmic forms
	Alternative method:		
	Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$	M1	correct use of g ⁻¹
	leading to $3e^{2x} = 4$, so $x = \frac{1}{2} \ln \frac{4}{3}$	DM1	dealing with $g^{-1}(41)$ to obtain an equation in terms of e^{2x}
		M1 A1	dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$g'(x) = 6e^{2x}$	B1	B1 for each
	$g'(\ln 4) = 96$	B1	

It is given that $f(x) = 3e^{2x}$ for $x \ge 0$, $g(x) = (x+2)^2 + 5$ for $x \ge 0$.

(i) Write down the range of f and of g.

[2]

(ii) Find g^{-1} , stating its domain.

[3]

(iii) Find the exact solution of gf(x) = 41.

[4]

(iv) Evaluate $f'(\ln 4)$.

(i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1	
(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to obtain the inverse function
	$g^{-1}(x) = -2 + \sqrt{x-5}$ Domain of $g^{-1}: x \ge 9$	A1 B1	Must be correct form for domain
	Alternative method: $y^2 + 4y + 9 - x = 0$	M1	attempt to use quadratic formula and find inverse
	$y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	A1	must have $+$ not \pm
(iii)	Need $g(3e^{2x})$	M1	correct order
	$(3e^{2x}+2)^2+5=41$	DM1	correct attempt to solve the equation
	or $9e^{4x} + 12e^{2x} - 32 = 0$ $(3e^{2x} - 4)(3e^{2x} + 8) = 0$ leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2}\ln\frac{4}{3}$	M1	dealing with the exponential correctly
	2 5		in order to reach a solution for <i>x</i>
	or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$	A1	Allow equivalent logarithmic forms
	Alternative method:		
	Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$	M1	correct use of g ⁻¹
	leading to $3e^{2x} = 4$, so $x = \frac{1}{2} \ln \frac{4}{3}$	DM1	dealing with $g^{-1}(41)$ to obtain an equation in terms of e^{2x}
		M1 A1	dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$g'(x) = 6e^{2x}$	B1	B1 for each
	$g'(\ln 4) = 96$	B1	

The function f is defined for the domain $-3 \le x \le 3$ by

$$f(x) = 9\left(x - \frac{1}{3}\right)^2 - 11.$$

- (i) Find the range of f.
- (ii) State the coordinates and nature of the turning point of
 - (a) the curve y = f(x),
 - (**b**) the curve y = |f(x)|.

[4]

[3]

_

$f(x) = 9(x - \frac{1}{3})^2 - 11$		
Minimum at x=1/s	M1 A1	Correct method for x co-ord of min.pt
(i) Range is -11 to 89.	B1 B1	B1 for each value. ≥ 89 gets B0.
(ii) (a) (1%,-11) Minimum.	B1	For "Minimum" - ignore any working.
(b) ()/, 11) Maximum	B1√B1√ [7]	Correct follow through from his coordinates and nature of stationary point.

- (i) Sketch the graph of y = |3x 5|, for $-2 \le x \le 3$, showing the coordinates of the points where the graph meets the axes. [3]
- (ii) On the same diagram, sketch the graph of y = 8x. [1]
- (iii) Solve the equation 8x = |3x 5|. [3]

(i) Graph of modulus function	B1 B1	B1 for shape B1 for 5 marked on y axis
	B1 [3]	B1 for $\frac{5}{3}$ marked on x axis
(ii) Straight line graph	B1 [1]	B1 for straight line with greater gradient
(iii) $8x = \pm (3x - 5)$ leading to $x = \frac{5}{11}$ or 0.455 only	M1 M1, A1 [3]	M1 for attempt to deal with modulus M1 for solution

(a) A function f is defined, for $x \in \mathbb{R}$, by

$$f(x) = x^2 + 4x - 6.$$

- (i) Find the least value of f(x) and the value of x for which it occurs. [2]
- (ii) Hence write down a suitable domain for f(x) in order that $f^{-1}(x)$ exists. [1]
- (b) Functions g and h are defined, for $x \in \mathbb{R}$, by

$$g(x) = \frac{x}{2} - 1,$$

 $h(x) = x^2 - x.$

- (i) Find $g^{-1}(x)$. [2]
- (ii) Solve $gh(x) = g^{-1}(x)$. [3]

(a) (i) $f_{min} = -10$, occurs when $x = -2$	B1 B1 [2]	
(ii) e.g. $x \ge -2$	B1 [1]	Allow any suitable domain that makes f a 1:1 function
(b) (i) $x = \left(\frac{y}{2} - 1\right)$, leading to $g^{-1}(x) = 2(x + 1)$	M1 A1 [2]	M1 for a valid method of finding the inverse function
(ii) $\frac{x^2 - x}{2} - 1 = 2(x + 1)$ leading to $x^2 - 5x - 6 = 0$ solution $x = 6$ and -1	M1 DM1 A1 [3]	M1 for correct order DM1 for solution of quadratic