FUNCTIONS-SET-1-QP-MS

1 The function f is defined, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$, by ${ }^{\circ}(x)=4-\cos 2 x$.
(i) State the amplitude and period of f .
(ii) Sketch the graph of f , stating the coordinates of the maximum points.

$f(x)=4-\cos 2 x$		
(i) amplitude $= \pm 1$. Period $=180^{\circ}$ or π	B1B1	Independent of graph. Do not allow " 4 to 5 ".
(ii)	B2,1	Must be two complete cycles. $0 / 2$ if not. Needs 3 to 5 marked or implied. Needs to start and finish at minimum. Needs curve not lines.
$\operatorname{Max}\left(90^{\circ}, 5\right)$ and $\left(270^{\circ}, 5\right)$	$\begin{array}{r} \mathrm{B} 1 \mathrm{~B} 1 \\ {[6]} \end{array}$	Independent of graph (90, 270 gets B1). Allow radians or degrees.

Given that each of the following functions is defined for the domain $-2 \leqslant x \leqslant 3$, find the range of

2

(i) $\mathrm{f}: \mathrm{x} \mapsto 2-3 x$,
(ii) $\mathrm{g}: x \mapsto|2-3 x|$,
(iii) $\mathrm{h}: x \mapsto 2-|3 x|$.

State which of the functions f, g and h has an inverse.

MARKING SCHEME:

(i)	$-7 \leq f(x) \leq 8$		B1	CAO Allow < for \leq
(i)	$0 \leq \mathrm{g}(\mathrm{x}) \leq 8$		B1 B1	CAO As above
(ii)	$-7 \leq h(x) \leq 2$		B1 B1	CAO As above
f yes	g no	h no	B2,1	Loses one for each wrong decision. (answer fon its own - allow B2)

(a) The function f is such that $\mathrm{f}(x)=2 x^{2}-8 x+5$.
(ii) Hence, or otherwise, write down a suitable domain for f so that f^{-1} exists.
(b) The functions g and h are defined respectively by

$$
\mathrm{g}(x)=x^{2}+4, \quad x \geqslant 0, \quad \mathrm{~h}(x)=4 x-25, x \geqslant 0 .
$$

(i) Write down the range of g and of h^{-1}.
(ii) On the axes below, sketch the graphs of $y=\mathrm{g}(x)$ and $y=\mathrm{g}^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes.

(iii) Find the value of x for which $\operatorname{gh}(x)=85$.

MARKING SCHEME:

(i) $2(x-2)^{2}-3$	B1B1	B1 for $-2, \mathrm{~B} 1$ for -3
(ii) $x \geq 2$ or equivalent	\checkmark B1	\checkmark on their ' -2 '
(b) (i) $\mathrm{g}(x) \geq 4, \mathrm{~h}^{-1}(x) \geq 0$	B1B1	B1 for each
(ii) Correct sketch	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	B1 for $g(x)$ B1 for $\mathrm{g}^{-1}(x)$ B1 for idea of symmetry
(iii) $\mathrm{g}(4 x-25)=85$	M1	M1 for correct order
$(4 x-25)^{2}+4=85$	DM1	DM1 for attempt to solve
$x=\frac{17}{2}, x=4$	A1	A1 for both
Discarding $x=4$	B1 [12]	B1 for discarding $x=4$

It is given that $\quad \mathrm{f}(x)=3 \mathrm{e}^{2 x} \quad$ for $x \geqslant 0$, $\mathrm{g}(x)=(x+2)^{2}+5 \quad$ for $x \geqslant 0$.
(i) Write down the range of f and of g.
(ii) Find g^{-1}, stating its domain.
(iii) Find the exact solution of $\operatorname{gf}(x)=41$.
(iv) Evaluate $\mathrm{f}^{\prime}(\ln 4)$.

MARKING SCHEME:

(i)	Range for $\mathrm{f}: ~ y \geq 3$ Range for $\mathrm{g}: y \geq 9$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(ii)	$x=-2+\sqrt{y-5}$	M1	attempt to obtain the inverse function
	$\begin{aligned} & \mathrm{g}^{-1}(x)=-2+\sqrt{x-5} \\ & \quad \text { Domain of } \mathrm{g}^{-1}: x \geq 9 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$	Must be correct form for domain
	Alternative method: $\begin{aligned} & y^{2}+4 y+9-x=0 \\ & y=\frac{-4+\sqrt{16-4(9-x)}}{2} \end{aligned}$	M1 A1	attempt to use quadratic formula and find inverse must have + not \pm
(iii)	$\begin{aligned} & \text { Need } \mathrm{g}\left(3 \mathrm{e}^{2 x}\right) \\ & \left(3 \mathrm{e}^{2 x}+2\right)^{2}+5=41 \\ & \text { or } 9 \mathrm{e}^{4 x}+12 \mathrm{e}^{2 x}-32=0 \\ & \quad\left(3 \mathrm{e}^{2 x}-4\right)\left(3 \mathrm{e}^{2 x}+8\right)=0 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \end{gathered}$	correct order correct attempt to solve the equation
	leading to $3 \mathrm{e}^{2 x}+2= \pm 6$ so $x=\frac{1}{2} \ln \frac{4}{3}$	M1	dealing with the exponential correctly in order to reach a solution for x
	or $\mathrm{e}^{2 x}=\frac{4}{3}$ so $x=\frac{1}{2} \ln \frac{4}{3}$	A1	Allow equivalent logarithmic forms
	Alternative method:		
	Using $\mathrm{f}(x)=\mathrm{g}^{-1}(41), \mathrm{g}^{-1}(41)=4$		
	leading to $3 \mathrm{e}^{2 x}=4$, so $x=\frac{1}{2} \ln \frac{4}{3}$	DM1	dealing with $\mathrm{g}^{-1}(41)$ to obtain an equation in terms of $\mathrm{e}^{2 x}$
		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$\mathrm{g}^{\prime}(x)=6 \mathrm{e}^{2 x}$	B1	B1 for each
	$\mathrm{g}^{\prime}(\ln 4)=96$	B1	

$$
\begin{array}{ll}
\text { It is given that } \quad & \mathrm{f}(x)=3 \mathrm{e}^{2 x} \quad \text { for } x \geqslant 0 \\
& \mathrm{~g}(x)=(x+2)^{2}+5 \quad \text { for } x \geqslant 0 .
\end{array}
$$

(i) Write down the range of f and of g.
(ii) Find g^{-1}, stating its domain.
(iii) Find the exact solution of $\operatorname{gf}(x)=41$.
(iv) Evaluate $\mathrm{f}^{\prime}(\ln 4)$.

MARKING SCHEME:

The function f is defined for the domain $-3 \leqslant x \leqslant 3$ by

$$
\begin{equation*}
\mathrm{f}(x)=9\left(x-\frac{1}{3}\right)^{2}-11 . \tag{3}
\end{equation*}
$$

(i) Find the range of f .
(ii) State the coordinates and nature of the turning point of
(a) the curve $y=\mathrm{f}(x)$,
(b) the curve $y=|\mathrm{f}(x)|$.

MARKING SCHEME：

$\begin{aligned} & f f(x)=9\left(x-\frac{1}{3}\right)^{2}-11 \\ & \text { Mirimum at } x=1 / 4 \end{aligned}$			M1 A1	Cofrect method for x co－did of min．pt
	Frange is－11	10 89，	日1 81	B1 for each value． 289 gets $\mathrm{P0} 0$
	（a）$(\mathrm{K},-11)$	Minimumt	B1	For＂Minimum＂－ganore any working．
	（b）（ 1 ，11）	Maximum	目的的 ［7］	Correct follow through from his coordinates and nature of stationary point．

(i) Sketch the graph of $y=|3 x-5|$, for $-2 \leqslant x \leqslant 3$, showing the coordinates of the points where the graph meets the axes.
(ii) On the same diagram, sketch the graph of $y=8 x$.
(iii) Solve the equation $8 x=|3 x-5|$.

MARKING SCHEME:

(i)	Graph of modulus function	B1	B1 for shape
		B1	B1 for 5 marked on y axis
		$\text { B1 } \quad \text { [3] }$	B1 for $\frac{5}{3}$ marked on x axis
(ii)	Straight line graph	$\mathrm{B}_{\quad} \quad[1]$	B1 for straight line with greater gradient
	$8 x= \pm(3 x-5)$	M1	M1 for attempt to deal with modulus
	leading to $x=\frac{5}{11}$ or 0.455 only	$\begin{gathered} \mathrm{M} 1, \mathrm{~A} 1 \\ {[3]} \end{gathered}$	M1 for solution

(a) A function f is defined, for $x \in \mathbb{R}$, by

$$
\mathrm{f}(x)=x^{2}+4 x-6 .
$$

(i) Find the least value of $\mathrm{f}(x)$ and the value of x for which it occurs.
(ii) Hence write down a suitable domain for $\mathrm{f}(x)$ in order that $\mathrm{f}^{-1}(x)$ exists.
(b) Functions g and h are defined, for $x \in \mathbb{R}$, by

$$
\begin{aligned}
& \mathrm{g}(x)=\frac{x}{2}-1, \\
& \mathrm{~h}(x)=x^{2}-x .
\end{aligned}
$$

(i) Find $\mathrm{g}^{-1}(x)$.
(ii) Solve $\operatorname{gh}(x)=\mathrm{g}^{-1}(x)$.

MARKING SCHEME:

(a) (i) $\mathrm{f}_{\min }=-10$,
occurs when $x=-2$
(ii) e.g. $x \geqslant-2$
(b) (i) $x=\left(\frac{y}{2}-1\right)$, leading to $\mathrm{g}^{-1}(x)=2(x+1)$
(ii) $\frac{x^{2}-x}{2}-1=2(x+1)$
leading to $x^{2}-5 x-6=0$ solution $x=6$ and -1

B1 Allow any suitable domain that makes fa 1:1 function
[1]

M1 \quad M1 for a valid method of finding the inverse function
[2]

M1
DM1
A1

