PARALLELOGRAM LAW

1 (a) In an accident, a truck goes off the road and into a ditch. Two breakdown vehicles A and B are used to pull the truck out of the ditch, as shown in Fig. 4.1.

Fig. 4.1

At one point in the rescue operation, breakdown vehicle A is exerting a force of $4000\,N$ and breakdown vehicle B is exerting a force of $2000\,N$.

(i) Using a scale of 1 cm = 500 N, make a scale drawing to show the resultant force on the truck.

			[4]
	(ii)	Use your diagram to find the magnitude and direction of the resultant force on the truck.	he
		magnitude of resultant force =	
		direction of resultant force = to direction of road [[2]
(b)	(i)	State why the resultant force is an example of a vector quantity.	
		[[1]
	(ii)	Give an example of a vector quantity that is not a force.	
		[[1]

[Total: 8]

(a)	(i)	(note: diagram may be drawn in any orientation) sides correct length, by eye forces drawn at 45°, by eye parallelogram completed correct diagonal drawn / correct resultant if intersecting arcs shown	B1 B1 B1 B1
	(ii)	magnitude: between 5500 N and 5700 direction: between 28° and 32°	B1 B1
(b)	(i)	it has direction (as well as magnitude)	B1
	(ii)	any example which is clearly a vector	B1 [8

Two students make the statements about acceleration that are given below.				
Student A:	For a given mass the acceleration of an object is proportional to the resultant force applied to the object.			
Student B:	For a given force the acceleration of an object is proportional to the mass of the object.			
(a) One sta	atement is correct and one is incorrect.			
Re-writ	e the incorrect statement, making changes so that it is now correct.			
For a g	iven the acceleration of an object is			
	[1]			
(b) State the	ne equation which links acceleration a , resultant force F and mass m .			
	[1]			
(c) Describ	be what happens to the motion of a moving object when			
(i) the	ere is no resultant force acting on it,			
	[1]			
(ii) a	resultant force is applied to it in the opposite direction to the motion,			
	[1]			
(iii) a	resultant force is applied to it in a perpendicular direction to the motion.			
	[1]			
	[Total: 5]			

(a)		statement re-written to include force in first gap and <u>inversely</u> portional to mass in second gap. NOT indirectly proportional	В1	
(b)	F =	ma OR in words in any correct arrangement	B1	
(c)	(i)	nothing OR continues as before OR same / constant velocity OR same / constant speed & direction OR no acceleration	B1	
	(ii)	idea of retardation. Ignore stop. Ignore brakes. Ignore goes in opposite direction	B1	
	(iii)	moves in (arc of a) circle or curve OR deflected OR turns OR changes direction	B1	[5]

3 Fig. 4.1 shows a heavy ball B of weight W suspended from a fixed beam by two ropes P and Q.

Fig. 4.1

P and Q are both at an angle of 45° to the horizontal. The tensions in P and Q are each 30 N.

(a) In the space below, draw a scale diagram to find the resultant of the tensions in P and Q. Use a scale of 1.0 cm to represent 5.0 N. Label the forces and show their directions with arrows.

(a)	2 lines at 90 $^{\circ}$ to each other of same length labelled 30 N or 6 cm	B1
	both lines 6.0 ± 0.2 cm.	В1
	arrows on the two lines drawn, either head to tail OR a complete square shown with diagonal and arrows on adjacent sides	В1
	resultant in range 40–45 N	В1
(b)	(vertically) upwards	В1
(c)	same as value in (a) , only if answer to (a) is a force OR 40–45 N	B1
		[T-4-1, C]

4 An object of weight *W* is suspended by two ropes from a beam, as shown in Fig. 1.1.

Fig. 1.1

The tensions in the ropes are 50.0 N and 86.6 N, as shown.

(a) In the space below, draw a scale diagram to find the resultant of the two tensions.

Use a scale of $1.0 \, \text{cm} = 10 \, \text{N}$.

Clearly label the resultant.

[3]

		resultant =	[1]
(c)	State the direction in which the resultant	is acting.	
			[1]
(d)	State the value of <i>W</i> .	W =	[1]

(b) From your diagram, find the value of the resultant.

[Total: 6]

(a)	(parallelogram or triangle may have any orientation) NOT a copy of Fig. 1.1	
	two sides at right angles, by eye	B1
	one side longer than the other diagonal or completion of triangle drawn and labelled "resultant" OR R	B1
	Ignore numerical values. Condone arrows in wrong direction	B1
(b)	98 N – 102 N (accept value found by calculation)	B1
(c)	(vertically) up/opposite to W NOT North	B1
(d)	his (b) OR correct value calculated	B1
	ignore mass	
		[Total: 6]

(a) (i) State the difference between a scalar quantity and a vector quantity.(ii) State one example of a vector quantity.

(b) Fig. 3.1 shows the top of a flagpole.

Fig. 3.1

The flagpole is held vertical by two ropes. The first of these ropes has a tension in it of 100 N and is at an angle of 60° to the flagpole. The other rope has a tension T, as shown.

The resultant force is down the pole and of magnitude 200 N.

In the space below, using a scale of 1 cm = 20 N, draw a scale drawing to find the value of the tension T. Clearly label 100 N, 200 N and T on your drawing.

tension $T =$	·	.[3
---------------	---	-----

[Total: 5]

[2]

(a) (i)	vector has direction OR scalar has no direction/only has size	B1
(ii)	any appropriate example	B1
tria ler 10	TE: accept diagram in any orientation; angle or rectangle with hypotenuse/diagonal of $\frac{1}{2}$ that of one side 0, 200 and T all correctly labelled ue in range $\frac{1}{2}$ 0, $\frac{1}{2}$ 0, $\frac{1}{2}$ 0, $\frac{1}{2}$ 1, $\frac{1}{2}$ 2, $\frac{1}{2}$ 3, $\frac{1}{2}$ 4, $\frac{1}{2}$ 4, $\frac{1}{2}$ 5, $\frac{1}{2}$ 6, $\frac{1}{2}$ 7, $\frac{1}{2}$ 8, $\frac{1}{2}$ 8, $\frac{1}{2}$ 9, $\frac{1}{2}$ 9	B1 B1 B1 [5]