UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/04

Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' v	n Syllabus Paper			
		IGCSE – October/Novemb	er 2011	1 0607 04		
1	(a) (i) (ii) (iii)	12 22 1.95 oe 574 (574.3 to 574.4)	1 1 2 FT	M1 for 1120 ÷ <i>their</i> (a)(ii) FT <i>their</i> (a)(ii)		
(b)		7 h 30 min	3 FT	 M1 for dividing <i>their</i> (a)(ii) by 0.26 oe in minutes by 0.26 M1 (dependent) on correct conversion of <i>their</i> time, if seen, into hours and minute, but number of minutes remaining not zero FT <i>their</i> (a)(ii) but could recover and be a correct time. 		
2	(a)	CBX oe	1	Allow <i>CBA</i> and <i>B</i>		
	(b)	10.5	2	M1 for $\frac{XC}{6} = \frac{7}{4}$ oe (<i>XC</i> can be a denominator)		
	(c)	10.7 (10.67 – 10.68)	2	M1 for $\left(\frac{4}{7}\right)^2$ or $\left(\frac{7}{4}\right)^2$ oe seen		
3	(a)	65.73	4	M2 for 480×1.026^5 oe M1 for 480×1.026^n oe $n > 1$ M1 for their amount – 480 (dependent on at least M1 already) Allow B4 also for 65.7 or 65.73 Allow 66 but only if 546 seen for amount		
	(b)	$480 \times 1.026^{x} = 800$ oe	M1	May be implied by next M		
		Any correct way of solving this e.g. $x = \frac{\log(800/480)}{\log 1.026}$	M1	(19.90 implies M2 but with working). Allow clear and organised trial and improvement for M 's		
		or graph sketched 20	A1	www 3 but only allow SC2 for correct answer without any working		

Page 3		Mark Scheme: Teachers' version			Syllabus	Paper	
		IGCSE – October/November 2011			0607 04		
4	(a)	8.95 (8.951 to 8.952)	www 3 3		$(BC =) \frac{12\sin 48}{\sin 95} \text{ oe}$ $\frac{\sin 48}{BC} = \frac{\sin 95}{12} \text{ oe}$		
	(b)	$(\cos D) = \frac{11^2 + 7^2 - 12}{2.11.7}$ 80.3 (80.28)	$\frac{2^2}{2}$ $2^$		correct full implicit	statement	
5	(a)	- 0.69, 2.19	M	e.g. corr answers e.g. full substitue If A0 , w 0.7 or – 2.186 or	explicit formula wi	th values ting, SC1 for – and 2.2 or	
	(b)	30	3	SC2 for correct SC2 for If B0 , S in f(<i>x</i>)	both answers corre	et SC1 for one atting $2x - 3$ for x	
6	(a)	$\frac{260}{360} \times \pi \times 4.7^{2}$ Angle at centre for trian $0.5 \times 4.7 \times 4.7 \times \sin(th)$ 61(.0) (60.97 to 61.00	neir 100°) M	Could b Only all this area	a fraction $\times \pi \times 4.7^2$ e on diagram ow if use acute/obtu i is + ve (10.87)		
	(b)	146 000 (146 300 to 14	46 500) 2 1		• (a) × 2400 their (a) × figs 24 (i	implied by figs	
	(c)	220 000	31	M1 (b) 2238 o or 2240. B1 (inder rounding		et 2sf	

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0607	04

7	(a)	150, 100	2	
	(b)	70.9 (70.86 to 70.87)	2 FT	M1 for mid-values seen, at least 2 correct FT <i>their</i> table in (a)
8	(a) (i) and (b) (i)		2	Only penalise rounding not to 4 sf once, but must be at least 2 sf. B1 for correct curve but poor quality, ignoring axes
	(ii)	(-1, 0), (0, 0), (1, 0)	2	B1 for 2 correct
	(iii)	x = 0	1	
	(iv)	(-0.7071, -0.25), (0.7071, -0.25),	2	
	(v)	$(\mathbf{f}(x)) \geq -0.25$	1 FT	FT <i>their</i> min point, if both y's the same. Condone $x \ge -0.25$. Also condone strict inequality
	(b) (i)	Correct sketch	2	B1 for correct curve but poor quality, ignoring axes
	(ii)	0.6781	1	
	(c) (i)	0.4988, 1.221	2	
	(ii)	0.4988 < <i>x</i> < 1.221	1 FT	Condone \leq or in words FT <i>their</i> (i)
9	(a)	548	2	M1 for 2 $(12 \times 10 + 12 \times 7 + 10 \times 7)$
	(b)	35(.0) (34.98 to 34.99)	2	M1 for $\tan = 7/10$ oe
	(c)	17.1 (17.11 to 17.12)	3	M2 for $\sqrt{12^2 + 10^2 + 7^2}$ oe or M1 for Pythag oe in one face

Page 5	Mark Scheme: Teachers' version				Syllabus	Paper
		IGCSE – October/November 2011			0607	04
10 (a) (i)	96		1			
(ii)	154	l.	2	M1 for	using angles of pe	ntagon total 540°
(b)	61		2	SC1 for diagram	t angle $DBC = 35$ (n)	may be on
(c) (i)	par	allelogram	1			
(ii)	84		1			
(d) (i)	26		1			
(ii)	For	example, angle $DXB \neq$ angle DYB	1	Reasonable evidence of contradiction of a circle property		
11 (a)			4	asked fo	values on axes sind or of one if 2 or mor	
(b) (i)	Translation $\begin{pmatrix} -2\\ 0 \end{pmatrix}$ oe		2		er words allowed worded description	in place of
(ii)	Stretch x-axis invariant oe factor 2 oe		3		/ N 2	r B1 dependent
(iii)	Ref	flection, <i>x</i> -axis oe	2	for 180°	ment then B1 for (

Page 6		Mark Scheme: Teachers'	Syllabus	Paper			
		IGCSE – October/November 2011			0607	04	
12 (a)	foll Ind 0.1	e diagram drawn one pair branches owed by two pairs of branches ication of raining and bike rides 5 and 0.85, 0.3 and 0.7, and 0.9 and correctly placed	B1 B3	B1 each pair in correct place			
(b) (i)	0.7	65 oe ft	2 FT	M1 for <i>their</i> 0.85×0.9 ft <i>their</i> diagram if labelled			
(ii)	0.8	1 oe cao	2	M1 for (i) + 0.15 × 0.3 or correct re-start			
(c)	12	ft	1 FT	FT <i>thei</i> or 12.2	FT <i>their</i> (b)(ii) × 15. Allow 12.15 or 12.1 or 12.2		
13 (a)	<i>y</i> =	3 oe	1				
(b)	<i>x</i> +	y = 4 oe	2	M1 for gradient of -1 or equation of line with gradient of -1			
(c)	<i>y</i> =	=2x-4 oe	2	Must be full equation then B1 for $2x$ and B1 for -4			
(d)	(22)	/ ₃ , 1/ ₃)	2	Allow correct values of x and y if not in co-ordinate form Allow 2.6 rec or 2.66 to 2.67, 1.3 rec or 1.33 SC1 for 2.6 and 1.3 or 2.7 and 1.3			
(e)	<i>y</i> ≤	$3 x+y \ge 4 y \le 2x-4$	2 FT	T SC1 for 2 correct FT <i>their</i> lines if reasonable. Co inequalities.		e. Condone strict	
14 (a)	(10	, 11), (20, 20), (17, 15), (9, 8) plotted	2	P1 for 3	3 correct		
(b)	Pos	itive	1				
(c) (i)	13.	2	1				
(ii)	0.8	79x + 1.07	2	Allow 0.8792 to 0.8793 and 1.065 to 1.066 SC1 for 0.88 <i>x</i> + 1.1			
(iii)		ed line through (13.8, 13.2) or (20, 65 to 18.7) and (0, 0.5 to 1.5)	2	Must be ruled with positive gradient then B1 through each point. Point on <i>y</i> -axis need not be indicated but other one must be			
(iv)	17	cao	1	Integer	answer only		

Page 7	Mark Scheme: Teachers'	version	Syllabus Paper
	IGCSE – October/Novemb	er 2011	0607 04
<u>г </u>		1	
15 (a) (i)	$\frac{360}{n}$	1	
(ii)	$\frac{360}{n+3}$	1	
(b)	$\frac{360}{n} - \frac{360}{n+3} = 4$ oe	B1 FT	ft <i>their</i> (i) – <i>their</i> (ii)
		B1	lhs = $\frac{360(n+3) - 360n}{n(n+3)}$ oe implied by next line
		M1	360(n+3) - 360n = 4n(n+3) (could still be all over $n(n+3)$) and, if first A1 line not seen, give A2
	15 cao www 5	A1 A1	$4n^2 + 12n - 1080 = 0$ or better e.g. $(n + 18)(n - 15) = 0$ Use of GDC – allow B2 for a correct graph or two correct graphs M1 (dependent) for finding zeros or <i>x</i> - coordinates of points of intersection then A1 for 15 Correct but no working SC2
		B1	Only FT case as follows: $\frac{360}{n+3} - \frac{360}{n} = 4$ which is B0 but then $lhs = \frac{360n - 360(n+3)}{n(n+3)}$ oe implied by next line
		M1 A1	360n - 360(n+3) = 4n(n+3) (could still be all over $n(n+3)$) and, if first A1 line not seen, give A2 $4n^2 + 12n + 1080 = 0$ then A0