SMART EXAM RESOURCES 0654 COORDINATED SCIENCES PHYSICS FORCES-SET-5-QP-MS

MEASURING SPRING CONSTANT

A student measures the spring constant k of a spring by two different methods.

The spring constant *k* of a spring is a measure of how difficult the spring is to stretch.

(a) Method 1

The student:

- measures the unstretched length l_{0} of the spring
- attaches the spring to a clamp
- suspends a mass m = 300 g on the spring as shown in Fig. 5.1
- measures the new, stretched length l_1 of the spring.

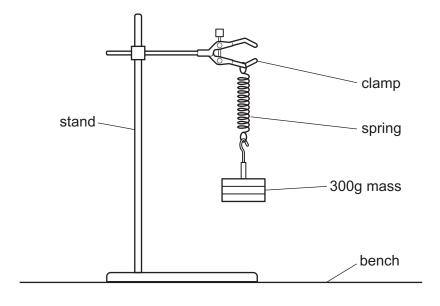


Fig. 5.1

Fig. 5.2 is a full size diagram showing the unstretched spring and the spring when it has been stretched by the 300 g mass.

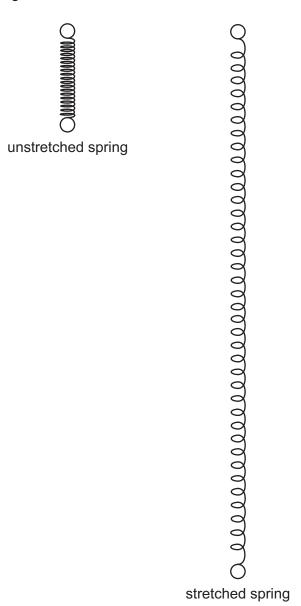


Fig. 5.2

(i) Measure the unstretched length l_0 of the spring in centimetres to the nearest 0.1 cm. Do **not** include the loops at the end of the spring in your measurement.

$$l_0 =$$
 cm [1]

(ii) Measure the new length $l_{\rm 1}$ of the spring in centimetres to the nearest 0.1 cm.

Do **not** include the loops at the end of the spring in your measurement.

$$l_1 = \dots$$
 cm [1]

		Use the equation shown.
		$e = l_1 - l_0$
		e = cm [1]
(b)	(i)	It is important to avoid a line-of-sight (parallax) error when measuring the length of a spring.
		Describe one way the student avoids this error.
	(ii)	Stretched springs are potentially dangerous because of the elastic energy stored in them. State two safety precautions that the student takes when doing the experiment. Explain
		how each precaution reduces the risk.
		1
		2
		[2]
(c)	Cal	culate a value k_1 for the spring constant of the spring.
	Use	e the equation shown.
		$k_1 = \frac{W}{e}$
	whe	ere W , the weight of the 300 g mass = 3.0 N.
		$k_1 = \dots N/cm [1]$

(iii) Calculate the extension e of the spring produced by the mass.

(d) Method 2

The student:

- pulls the mass down a small distance and releases it so that the mass oscillates up and down
- measures the time taken t_1 for 20 oscillations of the mass.

Fig. 5.3 shows the reading on the stop-watch.

Fig. 5.3

Record the time taken t_1 in Table 5.1.

Table 5.1

mass/g	time for 20 oscillations/s			average time for 20 oscillations	average period
	<i>t</i> ₁	t_2	t_3	t _{av} /s	T _{av} /s
300		14.4	14.1		
					[4]

[1]

- (e) The student repeats **Method 2** two more times and records the times t_2 and t_3 in Table 5.1.
 - (i) Calculate the average time t_{av} for 20 oscillations of the mass.

Use the equation shown.

$$t_{\text{av}} = \frac{(t_1 + t_2 + t_3)}{3}$$

Record your answer in Table 5.1.

[1]

(ii) State why repeating the timing and calculating the average time for 20 oscillations is good experimental practice.

[4]

(f)		culate the average period $T_{\rm av}$ of the oscillations. The period is the time for one oscillation ne mass.
	Red	cord your answer in Table 5.1. [1]
(g)	Cal	culate a value k_2 for the spring constant of the spring.
	Use	the equation shown.
		$k_2 = \frac{0.12}{(T_{av})^2}$
		$k_2 = N/cm [1]$
(h)	(i)	Use your answers to (c) and (g) to calculate $(k_1 - k_2)$, the difference between your two measured values of k .
		$(k_1 - k_2) = \dots N/cm$ [1]
	(ii)	State whether or not the difference in the values of k_1 and k_2 allows the values to be considered equal within the limits of experimental accuracy.
		Explain your answer.
		statement
		explanation
		[1]
		[Total: 14]

MARKSCHEME:

(a)(iii)	e = 11.8 (cm);	1
(b)(i)	view perpendicular / at eye level to scale / rule close to spring / use of set square / fiducial aid ;	1
(b)(ii)	any two from:	2
	wear goggles to protect (delicate) eyes from flying / rebounding springs ;	
	place a weight on the stand base to prevent it toppling over (stability) ;	
	wear shoes to protect against (heavy) weights falling onto feet/toes;	
(c)	$k_1 = 0.25 (\text{N/cm})$;	1
(d)	14.2(s);	1
(e)(i)	14.2(3);	1
(e)(ii)	spots anomalous results / increases the reliability ;	1
(f)	0.71(s);	1
(g)	$k_2 = 0.24 (\text{N/cm})$;	1
(h)(i)	0.01 (N/cm);	1
(h)(ii)	(expect) YES and difference very small / close to zero / insignificant / less than 10 %;	1

INVESTIGATING STRETCHING OF SPRINGS

2 A student investigates the stretching of a spring.

The student assembles the spring and a metre rule as shown in Fig. 5.1.

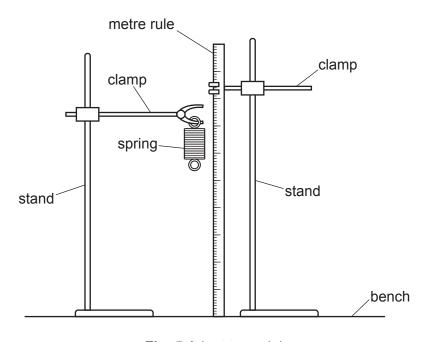


Fig. 5.1 (not to scale)

Fig. 5.2 shows a full-size diagram of the unstretched spring and part of the metre rule.

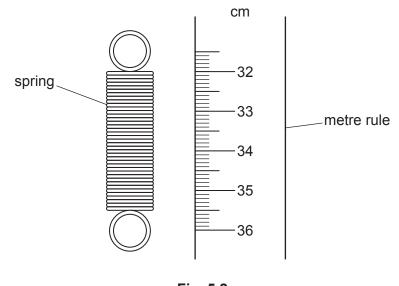


Fig. 5.2

(a)	(i)		adings from Do not includ					e coiled par	t of the
		Record y	our reading	s to the near	rest 0.1 cm.				
				reading of	top of spring	j =			cm
			re	ading of bott	om of spring	g =			cm [2]
	(ii)	Calculate	e the length	l_0 of the coil	ed part of th	e spring.			
		Show yo	our working.						
		Record i	n Table 5.1 t		l_0 for load $\it L$	= 0.0 N.			
	lo	oad <i>L</i>							
		/N	0.0	1.0	2.0	3.0	4.0	5.0	
		ngth <i>l</i> /cm		6.3	1.9	11.9	14.7	17.5	
(b)	Procedure The student: • places a load <i>L</i> = 1.0 N on the spring • records in Table 5.1 the length <i>l</i> of the coiled part of the spring • repeats this procedure for load <i>L</i> = 2.0 N, 3.0 N, 4.0 N and 5.0 N. The student records the length <i>l</i> of the coiled part of the spring, produced by one of the loads incorrectly.								
	Sta	te for whic	ch load the ir	ncorrect leng	jth has been	recorded.			
					load	d =			N
	Dec	duce the le	ength that th	e student sh	ould have re	ecorded.			
					lenç	yth			cm [2]

(c)	Line of sight (parallax) errors can occur when readings are taken from the metre rule.
	State two practical precautions that the student takes to ensure that accurate readings are taken from the metre rule.
	precaution 1
	precaution 2
	[2]
(d)	Another student suggests that the stretched length $\it l$ of the spring is proportional to load $\it L$.
	State if the readings support this suggestion.
	Use values from Table 5.1 to justify your answer.
	statement
	justification
	[1]
(e)	A student wants to stretch the spring to four times the length $\it l_{\rm 0}$ of the unstretched spring.
	Use the results in Table 5.1 to predict the load <i>L</i> the student needs to add to the spring.
	predicted load L = N [1]
(f)	Stretched springs are potentially dangerous because of the elastic energy stored in them.
	State and explain one safety precaution that the student takes when doing the experiment.
	precaution
	explanation
	[1]
	[Total: 10]

9

MARKSCHEME:

(a)(i)	32 <u>.0 :</u>	2
	35 <u>.5 :</u>	
(a)(ii)	3.5 ;	1
(b)	2(.0);	2
	9.1;	
(c)	any two from: view reading at eye level / perpendicular to rule ;	2
	place rule close / parallel to the spring ;	
	use of a fiducial aid e.g., set-square ;	
(d)	NO and doubling L does not double l (or similar) l the ratio $l/L/L/l$ is not constant;	1
(e)	3.5 – 3.9 inclusive ;	1
(f)	wear goggles to protect the eyes in case the spring breaks / comes loose / flies off /	1
	place a heavy load on the base of the stand to protect feet / hands / legs in case topples over / steel toe cap shoes protects feet from loads falling from spring / spring breaks;	