NUMBERS

VENN DIAGRAMS

In general:

- Venn diagram uses overlapping circles or other shapes to illustrate the logical relationships between two or more sets of items.
- A rectangle represents the universal set.
- The portion bounded by the circle represents a set.

Example:

The universal set is represented by the rectangle and the symbol "E" and the sets by the symbol

A, B,C etc.

Elements:

 $\mathscr{E} = \{1,2,3,4,5,6,7,9,11,16\}$

 $P = \{2,3,5,7,11\}$

 $S = \{1,4,9,16\}$ $M = \{3,6,9\}$

- 2,3,5,7,11 are the elements of set P
- 1,4,9,16 are the elements of set S
- 3.6.9 are elements of set M
- 1,2,3,4,5,6,7,9,11,16 are elements of the universal set "E"

Note: All elements are enclosed in Braces { } and separated by commas

Intersection of a set: Symbol : \cap

EXAMPLE:

Intersection (region common to both the sets) and is the shaded region

Element "x" represents the intersection of the three sets, namely; A, B and C.

Union of a set : Symbol: ∪

Union is everything that is shaded

Complement of a set : $(A \cup B)'$

In simple terms, complement of $(A \cup B)$ means everything that is not in $(A \cup B)$

.....

Empty set: Symbol: Ø. Empty set does not contain any elements

An empty set does not contain any element. So in the above intersection of C and D, there were no common elements, so this intersection was an empty set.

Subsets If all the elements of one set B are also elements of another set A, then B is said to be a subset of A. This is written as $\mathbf{B} \subset \mathbf{A}$

Similarly, $A \not\subset B$ implies that A is not a subset of B.

Superset

If a set X is a subset of Y, then Y is said to be a superset of X.

This is written as $X \supseteq Y$

Note:

Every set is its own subset and superset.

The empty set is a subset of all sets. Ø

Complement of a set: Following figure shows A compliment. It means everything that is not contained in set A.(Hence note that circle A has been left completely unshaded)

APPLICATION BASED QUESTIONS: Shading

Shade the required region on each Venn diagram.

0580/22/M/J/13

Solution:

Example:

Method: Shade A' with sloping lines pointing in one direction and then Shade B with sloping lines pointing in the other direction. **All the coloured regions represent the solution**

Method: Shade A' with sloping lines pointing in one direction and then Shade B' with sloping lines pointing in the other direction. The overlapping coloured region of both the lines (The criss-cross region) is the required answer region .

15

0580/23/M/J/13

The Venn diagram shows the number of elements in sets A, B and C.

(a)
$$n(A \cup B \cup C) = 74$$

Find x.

We have been asked to find the union of all the three sets:

Simple add all the values in the sets and equate them to

$$(13) + (12-x)+(x)+ (20-x)+(14) + (15-x)+(8) = 74$$

(b) $n(\mathscr{C}) = 100$

Find y.

Since E= [elements of
$$A + B+C$$
] + [outside them] = 74
74+ y=100
=>y=100-74=26

Answer(b) y = .

26

Interpret the given Venn diagrams:

22

- (a) Use the information in the Venn diagram to complete the following.
 - (i) P∩Q = {.....}

Only those elements which are in the overlapping region.

(ii) $P' \cup Q = \{\dots\}$

List all elements of both the mentioned sets

(iii) $n(P \cup Q)' = \dots$ Write the number of all elements in the union

(d) Use a set notation symbol to complete the statement.

[1]

Note: P' includes all those elements not present in P

Calculations based on Venn diagrams

16 (a) In this part, you may use this Venn diagram to help you answer the questions.

0580/23/M/J/15

In a class of 30 students, 25 study French (*F*), 18 study Spanish (*S*). One student does not study French or Spanish.

(i) Find the number of students who study French and Spanish.

Note: Total students=30

Assume that "x" students study both subjects.

So:

Students studying only:

nly: French=25-x

ch=25-x Spanish=18-x

so:

(Studying French)+ (Studying Spanish) + (Studying Spanish + French) + (Neither French/Spanish)=30

Do it yourself:

3 Three sets A, B and K are such that $A \subset K$, $B \subset K$ and $A \cap B = \emptyset$. Draw a Venn diagram to show this information.

0580/2/O/N/02

7

1+25-x+x+18-x=30

2

B1 for A,B disjoint B1 for A,B subsets of K

11
$$\mathscr{E} = \{40, 41, 42, 43, 44, 45, 46, 47, 48, 49\}$$

0580/02/O/N/04

 $A = \{\text{prime numbers}\}\$ $B = \{ \text{odd numbers} \}$

(a) Place the 10 numbers in the correct places on the Venn diagram.

[2]

(b) State the value of $n(B \cap A')$.

Answer(b) _____ [1]

B1 One region correct The numbers must be completely inside the correct region

Count the numbers in the region between A and B Not 45, 49

.....

17

0580/23/O/N/11

In the Venn diagram, $\mathscr{E} = \{\text{students in a survey}\}, R = \{\text{students who like rugby}\}\$ and $F = \{\text{students who like football}\}.$

$$n(\mathcal{E}) = 20$$

$$n(R \cup F) = 17$$

$$n(R) = 13$$

$$n(F) = 11$$

- (a) Find
 - (i) $n(R \cap F)$,

Answer(a)(i) [1]

(ii) $n(R' \cap F)$.

Answer(a)(ii)	[1]
Allower (u)(II)	 [1]

17	(ii) 7	1	
	(ii) 4	1	
	(b) $\frac{7}{13}$ oe	1ft	Ft their Venn diagram or their (a)(i)/13

9 In a survey, 100 students are asked if they like basketball (B), football (F) and swimming (S).

The Venn diagram shows the results.

0580/04/O/N/08

42 students like swimming.

40 students like exactly one sport.

(a) Find the values of p, q and r.

[3]

- (b) How many students like
 - (i) all three sports,

[1]

(ii) basketball and swimming but not football?

[1]

- (c) Find
 - (i) n(B'),

[1]

(ii) $n((B \cup F) \cap S')$.

[1]

(a)	(p =) 5 cao ₁ (q =) 12 cao (r =) 1 ft	B1 B1 B1ft	Accept in correct order if no labels ft for $r = 18 - their p - their q$ provided r not negative
(b) (i)	17 cao	B1)
(ii)	12 cao	BI	
(c) (i)	26 cao	B1	~
(ii)	57 ft	Bift	ft 45 + their q

~ ·

2 (a) x is an integer.

$$\mathscr{E} = \{x \colon 1 \le x \le 10\}$$

0580/42/F/M/15

 $A = \{x: x \text{ is a factor of } 12\}$

 $B = \{x: x \text{ is an odd number}\}$

 $C = \{x: x \text{ is a prime number}\}$

(i) Complete the Venn diagram to show this information.

[3]

(ii) Use set notation to complete each statement.

 $A \cap B \cap C = \dots$

$$A \cap A' = \dots$$
 [3]

(iii) Find n(B).

Answer(a)(iii) [1]

(b)

(i) Use set notation to complete the statement.

$$\{u,v\}$$
 Z [1]

(ii) Shade $X \cap (Z \cup Y)'$.

[1]

10

8 On the Venn diagrams shade the regions

0580/02/J/07

(a) A' ∩ C',

(b) $(A \cup C) \cap B$.

[1]

0580/22/M/J/10

7

The shaded area in the diagram shows the set $(A \cap C) \cap B'$.

Write down the set shown by the shaded area in each diagram below.

A A

.....

[2]

—End of lesson——

——Happy Learning——