FUNCTIONS

2.10

Answer only **one** of the following two alternatives.

EITHER

The functions f and g are defined, for x > 1, by

$$f(x) = (x+1)^2 - 4,$$

$$g(x) = \frac{3x+5}{x-1} \,.$$

Find

(i)
$$fg(9)$$
, [2]

(ii) expressions for
$$f^{-1}(x)$$
 and $g^{-1}(x)$, [4]

(iii) the value of x for which
$$g(x) = g^{-1}(x)$$
. [4]

OR

A particle moves in a straight line so that, at time ts after passing a fixed point O, its velocity is v ms⁻¹, where

$$v = 6t + 4\cos 2t.$$

Find

(ii) the acceleration of the particle when
$$t = 5$$
, [4]

12E

(i)
$$fg(9) = f(4)$$
 evaluated or $fg(x) = \left(\frac{3x+5}{x-1} + 1\right)^2 - 4$
21

ΑI

A1

M1

A1

M1

A1

[10

[10]

(ii) Method for
$$f^{-1}(x)$$

 $f^{-1}(x) = \sqrt{x+4} - 1$
A1

Put
$$y = \frac{3x+5}{x-1}$$
 and rearrange

$$g^{-1}(x) = \frac{x-1}{x-3}$$

(iii) Rearrange two of
$$\frac{3x+5}{x-1} = \frac{x+5}{x-3} = x$$
 to quadratic equation $2(x^2-4x-5) = 0$
Solve 3 term quadratic 5 only

120

- (ii) Differentiate v to find an expression for a M1 $6 - 8 \sin 2t$ A₁ Substitute t = 5DM₁ 10.3 to 10.4 A1
 - Β1
- (iii) 14 (iv) Integrate v to find an expression for sM1 $s = 3t^2 + 2\sin 2t$ A₁ Use limits 4 and 5 DM₁ 23.9 A1

2.11

(a) The functions f and g are defined, for $x \in \mathbb{R}$, by $f: x \mapsto 2x + 3,$ $g: x \mapsto x^2 - 1.$ Find fg(4).

[2]

(b) The functions h and k are defined, for x > 0, by

$$h: x \mapsto x + 4, \\ k: x \mapsto \sqrt{x}.$$

Express each of the following in terms of h and k.

(i)
$$x \mapsto \sqrt{x+4}$$

[1]

(ii)
$$x \mapsto x + 8$$

[1]

(iii)
$$x \mapsto x^2 - 4$$

[2]

(a) f(15) evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 **A**1 **(b) (i)** kh В1

(ii) h^2 or hh В1

(iii) $h^{-1}k^{-1}$ or $(kh)^{-1}$ B2 Answer only **one** of the following alternatives.

EITHER

(i) Express $4x^2 + 32x + 55$ in the form $(ax + b)^2 + c$, where a, b and c are constants and a is positive. [3]

The functions f and g are defined by

f:
$$x \mapsto 4x^2 + 32x + 55$$
 for $x > -4$,
g: $x \mapsto \frac{1}{x}$ for $x > 0$.

- (ii) Find $f^{-1}(x)$. [3]
- (iii) Solve the equation fg(x) = 135. [4]

OR

The functions h and k are defined by

h:
$$x \mapsto \sqrt{2x-7}$$
 for $x \ge c$,
k: $x \mapsto \frac{3x-4}{x-2}$ for $x > 2$.

- (i) State the least possible value of c. [1]
- (ii) Find $h^{-1}(x)$. [2]
- (iii) Solve the equation k(x) = x. [3]
- (iv) Find an expression for the function k^2 , in the form $k^2 : x \mapsto a + \frac{b}{x}$ where a and b are constants. [4]

Start your answer to Question 12 here.	Start your answer to Question 12 here.					
Indicate which question you are answering.	EITHER					
	OR					
	••••••	••••••				
	•••••	•••••				
		•••••				
		•••••				
	•••••	••••••				
		•••••				
		••••••				

Continue your answer here if necessary.

------Marking Scheme-----

(i) $(2x+8)^2-9$ or $a=2, b=8, c=-9$	B1B1B1 [3]	B1 for each correct value
(ii) $f^{-1}(x) = \frac{\sqrt{(x+9)} - 8}{2}$ oe (iii)	M1 A2,1,0√ [3]	inverse of form $\frac{\sqrt{(x \pm c)} \pm b}{a}$ 3, 1 – 2, 0 correct values, ft their a , b and c
$\left(\frac{2}{x} + 8\right)^2 - 9 = 135 \text{ or } \frac{4}{x^2} + \frac{32}{x} + 55 = 135$	M1	apply fg (not gf) or replace x by $\frac{1}{x}$
$\frac{2}{x} + 8 = 12(\text{or} - 12) \text{ or } 80x^2 - 32x - 4 = 0$	A1 M1	correct equation valid method for solving their equation
x = 0.5 oe, only	A1 [4]	correct answer
(i) 3.5	B1 [1]	correct answer
(ii) $y^2 + 7 = 2x$ $h^{-1}(x) = \frac{x^2 + 7}{2}$	M1 A1 [2]	attempt at inverse, involving squaring correct inverse
(iii) $\frac{3x-4}{x-2} = x$, $x^2 - 5x + 4 = 0$	M1	equate $k(x)$ with x and obtain quadratic equation
(x-4)(x-1) $x = 4 only$	M1 A1 [3]	solve three term quadratic correct answer
(iv)		
$\frac{3\left(\frac{3x-4}{x-2}\right)-4}{\left(\frac{3x-4}{x-2}\right)-2}$	M1	substitute to obtain expression for k^2
(2)	A1	correct unsimplified expression
$\frac{3(3x-4)-4(x-2)}{3x-4-2(x-2)}$	M1	multiply numerator and denominator by $(x - 2)$, oe
$5-\frac{4}{x}$	A1 [4]	correct answer

2.12

(a) (i) The diagram shows the graph of $y = A + C \tan(Bx)$ passing through the points (0, 3) and $\left(\frac{\pi}{2}, 3\right)$. Find the value of A and of B.

(ii) Given that the point $\left(\frac{\pi}{8}, 7\right)$ also lies on the graph, find the value of C. [1]

(b) Given that $f(x) = 8 - 5\cos 3x$, state the period and the amplitude of f.

[2]

period amplitude

------Marking Scheme-----

(a) (i)	A = 3, B = 2	B1, B1	
(ii)	C=4	B1	
(b)	120 or $\frac{2\pi}{3}$	B1	
	5	B1	