FUNCTIONS

2.1.

A function f is defined by f: $x \rightarrow \frac{e^x + 1}{4}$ for the domain $x \ge 0$.

- (i) Evaluate $f^2(0)$. [3]
- (ii) Obtain an expression for f^{-1} . function [2]
- (iii) State the domain and the range of f^{-1} . [2]

------Marking Scheme------

(i)	$f(0) = \frac{1}{2}$	$f^2(0) = f(\frac{1}{2}) = (\sqrt{e + 1})$	/4 ≈ 0.662 (acc	ept 0.66 or better)	B1 I	W1 A1
(ii)	$x = (e^y + 1)/4$	\Rightarrow e ^y = 4x - 1	$\Rightarrow f$	$1: x \mapsto \ln(4x - 1)$	N	И1 A1
(iii)	Domain of f ⁻¹ is	<i>x</i> ≥½	Range of f ⁻¹ is	$f^1 \ge 0$	B1	B1
[7]						

Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto e^x$$
,

$$g: x \mapsto 2x - 3$$
.

(i) Solve the equation fg(x) = 7. [2]

Function h is defined as gf.

- (ii) Express h in terms of x and state its range. [2]
- (iii) Express h^{-1} in terms of x. [2]

------Marking Scheme-----

(i)	e^{2x-3} (= 7) \Rightarrow $x = \frac{1}{2} (3 + \ln 7) \approx 2.47 \sim 2.48 (not 2.5)$	M1	A1
(ii)	$h = 2e^x - 3$ $(x, y \text{ or}) h > -3 \text{ accept } \ge$	B1	B1
(iii)	h^{-1} (or y) = $\ln \{\frac{1}{2}(x+3)\}$ or $\ln(x+3) - \ln 2$ or $\ln(\frac{1}{2}(x+3))$ /lge but $\ln(\frac{1}{2}(y+3))$ M1 A0 lg (or log) $\{\frac{1}{2}(x+3)\}$ M1 A0	M1 (M1 for l taken in way	logs

2.3

Express $6 + 4x - x^2$ in the form $a - (x + b)^2$, where a and b are integers. [2]

(i) Find the coordinates of the turning point of the curve $y = 6 + 4x - x^2$ and determine the nature of this turning point. [3]

The function f is defined by $f: x \mapsto 6 + 4x - x^2$ for the domain $0 \le x \le 5$.

(ii) Find the range of f. [2]

(iii) State, giving a reason, whether or not f has an inverse. [1]

-------Marking Scheme------

[8]	$6 + 4x - x^2 \equiv 10 - (x - 2)^2$	M1 A1	
	(i) $x = 2$ $y = 10$ Maximum	B1√B1√B1	
	(ii) $f(0) = 6$, $f(2) = 10$, $f(5) = 1$ \Rightarrow $1 \le f \le 10$ [alternatively $1 \le B1$, $\le 10 B1$]	M1 A1	
	(iii) f has no inverse; it is not 1:1	B1	

(i) Sketch the graph of y = |3x + 9| for -5 < x < 2, showing the coordinates of the points where the graph meets the axes.

(ii) On the same diagram, sketch the graph of y = x + 6.

[1]

[3]

(iii) Solve the equation |3x + 9| = x + 6. [3]

------Marking Scheme-----

(i) Idea of modulus correct
 Shape and position completely correct
 (0, 9) (-3, 0) indicated on graph
 (ii) Straight line with +ve gradient and +ve y intercept, correct position
 B1

(iii)
$$3x + 9 = x + 6 \Rightarrow x = -1.5$$

Solve $-(3x + 9) = (x + 6)$ or $(3x + 9)^2 = (x + 6)^2$
 $x = -3.75$
B1
M1
A1 [7]