

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CO-ORDINATE	ED SCIENCES		0654/32
Paper 3 (Exten	ded)		May/June 2014
			2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 32.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 30 printed pages and 2 blank pages.

1 (a) Select elements from the list below to complete the left hand column in Table 1.1.Each element may be used once, more than once or not at all.

aluminium	chlorine	copper	gold
helium	potassium	sulfur	zinc

element	use of element	
	filling weather balloons	
	galvanising steel	
	making food containers	
	sterilising drinking water	

[2]

(b) Table 1.2 shows properties of four elements **A**, **B**, **C** and **D**.

Table 1.2

element melting point/°C		electrical conductivity	reaction with water	
Α	1455	high	none	
B –220		very low	reacts quickly	
C –112		very low	none	
D	181	high	reacts quickly	

Use the information in Table 1.2 to suggest which element could be found in Group I of the Periodic Table.

Explain your answer.

element

explanation

[2]

(c) Fig. 1.1 shows what happens when a student dips a nail made of zinc into a solution of copper sulfate for one minute.

(i) Suggest the **word** equation for the reaction that occurs between zinc and copper sulfate solution.

(ii) Explain the change in appearance of the nail in terms of the reactivity series of metals.

[2]

(d) The student then carries out another experiment involving copper sulfate solution, using the apparatus shown in Fig. 1.2.

Fig. 1.2

(i) Name the gaseous **element** present in the gas bubbles produced at the anode.

[1]

(ii) Describe, in terms of copper ions, Cu^{2+} , what happens to cause the formation of the orange layer on the surface of the cathode.

[3]

2 (a) A skier takes part in a downhill race.

He accelerates from rest. After 30 seconds he reaches a maximum speed of 12 m/s. He continues at this speed for another 10 seconds. The race is then completed and he slows down and stops after a total time of 50 seconds.

On the grid, draw a speed/time graph of the motion of the skier.

[2]

(b) The speed/time graph for another skier is shown in Fig. 2.1.

Fig. 2.1

(i) Describe how to use the graph in Fig. 2.1 to determine the total distance travelled in 60 s by the skier.

[1]

(ii) Calculate the total distance travelled by the skier from 0 to 60 s.

Show your working.

distance = _____ m [2]

(c) Fig. 2.2 shows the skier as he is pulled up a mountain by a cable (lift).

Fig. 2.2

The skier has a mass of 80 kg. The cable pulls him 150 m up the slope. He rises through a total vertical distance of 60 m.

Calculate the work done lifting the skier from the bottom to the top of the slope. You should ignore the work done against friction. (Use gravitational field strength g = 10 N/kg).

State the formula used, show your working and state the unit of your answer.

formula

working

work done = unit [3]

(a) Explain what is meant by *negative feedback* in homeostasis.
[2]
(b) In the homeostatic control of blood glucose concentration, name

(i) the hormone that causes blood glucose concentration to fall,
[1]
(ii) the gland that secretes this hormone.

[1]

(c) Fig. 3.1 shows some blood vessels in skin.

Describe the changes that take place at X and Y when a person is feeling too hot, and explain how these changes help to keep the person cool.

description _______explanation ______[3]

3

- (d) Some people suffer from a disease called Raynaud's syndrome, in which the blood supply to the fingers may be severely reduced for a period of time varying from just a few minutes up to several hours.
 - (i) Suggest what changes in the body to cause the blood supply to the fingers to be reduced.

[1]	
(ii) People with Raynaud's syndrome are told to take special care to keep their hands warm in cold weather.	(ii)
Suggest the reason for this advice.	
[1]	
iii) Explain what might be the effect on the fingers if the blood supply to them is severely reduced for several hours.	(iii)
[2]	

4 (a) (i) Hydrogen and carbon are elements.

The gaseous hydrocarbon, propane, is a compound.

Use these examples to explain the difference between elements and compounds.

(ii) State one raw material from which hydrocarbons like propane can be obtained.
[1]
(iii) State the name of a process that can be used to separate propane gas from the raw material you have named in (ii).
[1]
(iv) State one use of propane.

(b) Fig. 4.1 shows a simplified diagram of the catalytic cracking of propane, a saturated hydrocarbon.

Fig. 4.1

(i) State what is meant by the word *saturated* when it is used to describe hydrocarbon molecules.

[1]

(ii) Complete the diagram below to show the structure of one molecule of **propene**.

[2]

(iii) A teacher says that 'When propane is passed into the apparatus in Fig. 4.1, chemical bonds between the carbon atoms in some of the propane molecules are broken.'

State and explain which information in Fig. 4.1 supports this statement.

[2]

5 (a) A bar magnet is brought close to a piece of iron as shown in Fig. 5.1. The piece of iron moves towards the bar magnet but does not touch it.

Explain why the piece of iron is attracted to the bar magnet by referring to the magnetic properties of iron.

[2]

- (b) Relays are often used as switches in circuits that use large currents for operating machinery.
 - (i) Explain why relays are used in this way.

[2]

(ii) Describe how a relay switches electrical machinery on and off. You may draw a diagram if it helps your answer.

[2]

(c) Fig. 5.2 shows a circuit containing three identical lamps. The circuit is switched on.

(i) The current flowing through lamps L_1 and L_2 is 0.15A. The current flowing through lamp L_3 is 0.3A.

State the reading on the ammeter.

		A	[1]
(ii)	The voltage across lamp L_3 is 3.0 V.		
	State the voltage across the battery.		
	voltage =	V	[1]
(iii)	Calculate the resistance of lamp L_3 .		
	State the formula that you use and show your working.		
	formula		
	working		
	resistance =	Ω	[2]
(iv)	Write down the combined resistance of lamps L_1 and L_2 .		
	resistance =	Ω	[1]

(v) Using your answers to parts (iii) and (iv) calculate the combined resistance of the three lamps in the circuit.

State the formula that you use and show your working.

formula

working

resistance = Ω [3]

Please turn over for Question 6.

6 The picture shows an animal called a mongoose. The mongoose is a mammal that feeds on insects and small vertebrates such as lizards.

Table 6.1 shows what happens to the energy in a mongoose's food. The figures are per 100 kJ of energy in the food eaten.

	~ .
Table	6.1

type of energy transfer	energy transferred (kJ per 100 kJ in food eaten)		
lost in faeces	20		
absorbed into the body	80		
used in production of new tissue	24		
used in respiration	56		

- (a) Using Table 6.1,
 - (i) state the percentage of the animal's food energy that is absorbed into the body.

[1]

(ii) calculate the percentage of the food energy absorbed into the body that is used in the production of new tissue.

Show your working.

 (b) All of the energy in the mongoose's food will eventually be transferred into the same form of energy.

State this form of energy.

			[1]
(c)	Sug	ggest one way in which the mongoose would use energy released from respiration.	
			[1]
(d)	Sug	ggest and explain how the values in Table 6.1 would be different for	
	(i)	a mammal in a colder climate,	
			[2]
	(ii)	an animal that eats mainly grass.	
			[2]

- 7 The isotope technetium-99 is used in medical tests as a radioactive tracer. It emits γ -(gamma) radiation that medical equipment can detect in the human body.
 - (a) Fig. 7.1 shows the results of an experiment to measure how the radioactivity of technetium-99 changes with time.

Fig. 7.1

(i) The results plotted in Fig. 7.1 have already been corrected for a background radiation of 50 counts per second.

Sketch on Fig. 7.1, the graph for the results before the correction for background radiation. [2]

(ii) Use Fig. 7.1 to find the half-life of the isotope in hours.

Show your working.

half-life = _____hours [2]

(iii) Suggest why the half-life you calculated in (ii) makes the isotope suitable for its use as a radioactive tracer in the human body.

[2]

(b) The isotope releases γ -radiation but not α -radiation or β -radiation.

Suggest why this makes technetium-99 suitable for its use as a radioactive tracer in the human body.

[2]

(c) γ -rays are one part of the electromagnetic spectrum.

Fig. 7.2 shows an incomplete electromagnetic spectrum.

gamma-rays	X-rays		visible light	infra-red	microwaves			
	Fig. 7.2							
(i) Us	e words from t	the list to comp	lete the spectr	um in Fig. 7.2.				
infra-sound	a radio wav	es seismic	waves ultra	asound ultr	raviolet wat	er waves		
						[1]		
(ii) Sta	ate the part of	the electromag	netic spectrum	which has the	shortest wave	length.		
						[1]		
(iii) Ex	plain what is n	neant by the te	rm <i>wavelength</i>					
Yo	u may draw a	diagram if it he	lps your answe	er.				
						[1]		
(d) β-partio	cles are electro	ons. Electrons a	are involved in	the production	of electrostatio	charges.		
Descril a piece	be in terms of e of cloth.	electrons how	a rubber balloo	on becomes ch	narged when ru	ıbbed against		
••••••						[2]		

8 (a) Define the term *chromosome*.

[2]

(b) Fig. 8.1 shows all the chromosomes in a human skin cell, arranged in pairs.

(i) A student examines the chromosomes in Fig. 8.1. He describes the skin cell as 'haploid'.

Explain why the student's description was wrong. State the description that should have been used.

[2]
(ii) State two ways in which the chromosomes in an egg cell would be different from those in Fig. 8.1.
1
2
[2]

20

(c) Fig. 8.2 shows the number of chromosomes in each cell in some of the stages of the life-cycle of a peach aphid (a small insect). The young aphids are called nymphs.

On Fig. 8.2,

- (i) mark with the letter **M** a point at which meiosis occurs, [1]
- (ii) fill in the empty squares to show the number of chromosomes per cell in the remaining stages of the life-cycle. [2]
- (d) Insects such as the peach aphid show both sexual and asexual reproduction.

Suggest an advantage to the peach aphid of

(i) sexual reproduction,

[1]

(ii) asexual reproduction.

[1]

9 (a) Fig. 9.1 shows the nucleus of an atom of the element sulfur, proton number 16.

 \bigcirc

Fig. 9.1

Complete Fig. 9.1 to show how **all** of the electrons are arranged in an atom of sulfur. [2]

(b) (i) Fig. 9.2 shows a diagram of the structure of one molecule of sulfur dioxide, SO₂. In this molecule, the atoms of oxygen and sulfur are held together by double covalent bonds.

Deduce the number of shared electrons in bond B.

[1]

(ii) Explain why the presence of sulfur dioxide in the atmosphere causes the water in some lakes to become acidic.

[2]

(c) Fig. 9.3 shows apparatus used to measure the rate of reaction between magnesium and dilute sulfuric acid.

(i) State the effect of changing the temperature of the acid on the time taken for the measuring cylinder to fill with hydrogen gas.

[1]

(ii) Explain your answer to (i) in terms of collisions between particles.

[2]

(d) The balanced symbolic equation for the reaction between magnesium and excess dilute sulfuric acid is

 $Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$

A student was asked to use the apparatus in Fig. 9.3 to collect 120 cm³ of hydrogen gas.

(i) Calculate the number of moles of hydrogen gas in 120 cm³. The volume of one mole of hydrogen gas under the conditions in the laboratory is 24.0 dm³.

Show your working.

number of moles = [1]

(ii) Calculate the minimum mass of magnesium that the student should use to make sure that she has enough to produce 120 cm³ of hydrogen gas.

Show your working.

mass of magnesium = _____g [2]

10 (a) Define the term *nutrition*.

[2]

(b) Fig. 10.1 shows some stages in the production of yoghurt from milk.

(i) Name the type of microorganisms used in producing yoghurt from milk.

[1]

(ii) During the fermentation stage, air is kept out of the fermentation vessel.

Explain why this is important.

[1]

25

(iii) Before fermentation, the milk is heat treated during the process of pasteurisation. Suggest two reasons why this is important. 1 2 [2] (iv) In this production process, fat is removed from the milk before the milk is converted to yoghurt. Explain why, as a result of this, the yoghurt might be healthier to eat than yoghurt from full-fat milk. [2] (v) During the fermentation stage, the pH of the mixture falls. Explain why this happens.[1]

11 Fig. 11.1 shows a ray diagram of a lens producing an image.

Fig. 11.1

(a)	(i)	On Fig. 11.1 draw another ray of light from the top of the object, that passes through centre of the lens and crosses the first ray on the right hand side of the lens.	the [1]										
	(ii)	On Fig. 11.1 draw the image of the object and label it 'image'.	[1]										
	(iii)	State the name given to point F on Fig. 11.1.											
			[1]										
(b) The image produced in Fig. 11.1 is a real image.													
	(i)	State two other characteristics of the image formed in Fig. 11.1.											
		1											
		2											
	(ii)	State the difference between a real image and a virtual image.											
			•••••										
			[1]										

12 Compounds containing ammonium ions are added to soil as fertilisers.

Ammonia gas manufactured by the Haber process is used to produce ammonium nitrate and ammonium sulfate.

- (a) Ammonium nitrate is made in a neutralisation reaction between the base, ammonia, and an acid.
 - (i) Name the acid that reacts with ammonia to produce ammonium nitrate.

[1]

(ii) Ammonium sulfate has the chemical formula $(NH_4)_2SO_4$. The formula of the sulfate ion is $SO_4^{2^2}$.

Deduce the formula of the ammonium ion.

Show your working.

ammonium ion = [2]

(b) Fig. 12.1 shows a simplified diagram of part of the Haber process.

(i) Hydrogen gas is made in a reaction between methane and steam. In this reaction methane reacts with steam, H₂O(g), to produce carbon monoxide, CO, and hydrogen gas.

Deduce the balanced symbolic equation for this reaction.

[3]

(ii) State the **three** important reaction conditions inside the reaction vessel in Fig. 12.1.

1	
2	
3	 [2]

BLANK PAGE

BLANK PAGE

	0	4 C		ő	e	eon	01	Ł	uoĝ.	34	ج ا	pton	31	e	non		'n	idon			75	n.	etium		ancium
			2 He		Z	10 N	4	4	18 18	8	<u>×</u>	36 Kry	÷	×	54 Xe			Ra 86			-	_	71 71	-	Lawre
	١١٨			19	ш	Fluorine 9	35.5	Cl	Chlorine 17	80	Br	Bromine 35	127	н	lodine 53		At	Astatine 85			173	Υb	Ytterbium 70	Ž	Nobelium
	N			16	0	Oxygen 8	32	S	Sulfur 16	62	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84			169	Tm	Thulium 69	τw	Mendelevium
	>			14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83			167	ц	Erbium 68	E L	Fermium
	\geq			12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82			165	Ч	Holmium 67	ч Ц	Einsteinium
	III			5	В	Boron 5	27	٩l	Auminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81			162	D	Dysprosium 66	ţ	Californium
										65	Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80			159	Tb	Terbium 65	Яk	Berkelium
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			157	Вd	Gadolinium 64	Ĕ	Curium
dnc										59	ÏZ	Nickel 28	106	Pd	Palladium 46	195	F	Platinum 78			152	Eu	Europium 63	۵m	Americium
Ğ				_						59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			150	Sm	Samarium 62	ā	Plutonium
		ב -	Hydrogen 1							56	Fe	lron 26	101	Ru	Ruthenium 44	190	0s	Osmium 76				Pm	Promethium 61	gN	Neptunium
										55	Mn	Manganese 25		Ч	Technetium 43	186	Re	Rhenium 75			144	Nd	Neodymium 60	238	Uranium
										52	ŗ	Chromium 24	96	Мо	Molybdenum 42	184	≥	Tungsten 74			141	Pr	Praseodymium 59	Da	Protactinium
										51	>	Vanadium 23	93	ЧN	Niobium 41	181	Та	Tantalum 73			140	Ce	Cerium 58	232 Th	Thorium
										48	Ħ	Titanium 22	91	Zr	Zirconium 40	178	Ηf	Hafnium 72						iic mass ool	ic) number
										45	Sc	Scandium 21	68	≻	Yttrium 39	139	La	Lanthanum 57 *	227	Actinium 89	ceriec	eries	222	 relative ator atomic svmb 	= proton (atom
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	Barium 56	226	Radium 88	hinnedtur	Vetinoid s		× ع ۲	ہ : د
	_			7	:	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	, L	Francium 87	58-711	90-1037		Nev.	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.