An IGCSE student is determining the density of the material of a metre rule.

Fig. 1.1 shows the balancing experiment used to determine the mass of the rule.

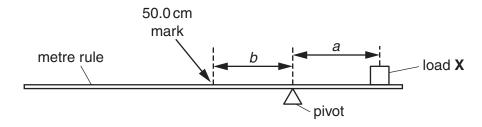


Fig. 1.1

(a)	(i)	On Fig. 1.1, measure the distance a from the centre of the load ${\bf X}$ to the pivot.
		a =cn
	(ii)	On Fig. 1.1, measure the distance <i>b</i> from the pivot to the 50.0 cm mark on the rule

- (b) The diagram is drawn one tenth of actual size.
 - (i) Calculate the actual distance x from the centre of the load X to the pivot.

(ii) Calculate the actual distance y from the pivot to the 50.0 cm mark on the rule.

(iii) Calculate the mass *m* of the metre rule using the equation

where
$$k = 100 \,\mathrm{g}$$
.

(c) Figs. 1.2 and 1.3 show part of the metre rule drawn actual size.

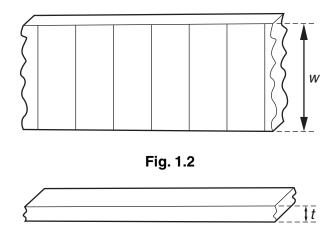


Fig. 1.3

(i)	Take and record measurements from Fig. 1.2 to determine the average width wo
	the metre rule.

w =cm

(ii) Take and record measurements from Fig. 1.3 to determine the average thickness *t* of the metre rule.

(iii) Calculate the volume V of the metre rule using the equation V = lwt where l is the length of the metre rule (100.0 cm).

V=[3]

(iv) Calculate the density ρ of the metre rule using the equation $\rho = \frac{m}{V}$.

 ρ =[3]

(d) State the assumption that the student has made about the position of the centre of mass of the metre rule.

.....[1]

[Total: 10]

2

	Marking Scheme	
(a) a a	and <i>b</i> correct 2.3cm, 2.1cm	
(b) (i)	and (ii) x and y correct (10a and 10b)/(23cm, 21cm)	
(iii)	m correct arithmetic, in g (110/109.5(2)(g))	
(c) (i)	and (ii) at least two values given for w and t more than two values given for w or t correct values for w and t (2.75 – 2.85cm, 0.4cm)	
(iii)	V calculation correct (110 – 114(cm ³)) or ecf	
(iv)	density to 2 or 3 significant figures $(0.960 - 1.00)$ or ecf unit g/cm ³	
(d) cer	entre of mass at 50cm mark/midpoint/middle (wtte)	