## **WORK-ENERGY-POWER**

|     | Draw <b>two</b> straight lines <b>from each box</b> on that source of energy.         | the left to the two boxes on the right wh | nich describe |
|-----|---------------------------------------------------------------------------------------|-------------------------------------------|---------------|
|     |                                                                                       | renewable                                 |               |
|     | solar energy                                                                          | not renewable                             |               |
|     |                                                                                       |                                           |               |
|     | natural gas                                                                           | polluting                                 |               |
|     |                                                                                       | not polluting                             |               |
| (b) | Coal-fired power stations are polluting.  State an advantage of using coal as a sou   | rea of anoray                             | [2]           |
|     | Otate an advantage of daing coar as a sou                                             |                                           |               |
| (c) | A coal-fired power station generates electr                                           | icity at night when it is not needed.     | [1]           |
|     | Some of this energy is stored by pumping demand for electricity, the water is allowed |                                           |               |
|     | On one occasion, $2.05 \times 10^8$ kg of water is                                    | pumped up through a vertical height of    | of 500 m.     |
|     | (i) Calculate the weight of the water.                                                |                                           |               |
|     |                                                                                       | weight =                                  | [1]           |

| (ii)  | Calculate the gravitational potential energy gained by the water.                                                                                                                         |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       |                                                                                                                                                                                           |  |  |
|       | energy gained =[2]                                                                                                                                                                        |  |  |
| (iii) | The electrical energy used to pump the water up to the mountain lake is $1.2 \times 10^{12}$ J. Only $6.2 \times 10^{11}$ J of electrical energy is generated when the water is released. |  |  |
|       | Calculate the efficiency of this energy storage scheme.                                                                                                                                   |  |  |
|       |                                                                                                                                                                                           |  |  |
|       |                                                                                                                                                                                           |  |  |
|       | efficiency =[2]                                                                                                                                                                           |  |  |
|       | [Total: 8]                                                                                                                                                                                |  |  |
|       |                                                                                                                                                                                           |  |  |
|       |                                                                                                                                                                                           |  |  |
|       |                                                                                                                                                                                           |  |  |
|       |                                                                                                                                                                                           |  |  |
|       |                                                                                                                                                                                           |  |  |
|       |                                                                                                                                                                                           |  |  |
|       |                                                                                                                                                                                           |  |  |
|       |                                                                                                                                                                                           |  |  |

## **MARKING SCHEME:**

| (a) | lines from solar energy to boxes 1 AND 4 only                                                  |                                                                                                |            |  |  |
|-----|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------|--|--|
|     | lines from natural gas to boxes 2 AND 3 only                                                   |                                                                                                |            |  |  |
| (b) | (b) (relatively) cheap OR widely available OR can be used on a large scale OR always available |                                                                                                |            |  |  |
| (c) | (i)                                                                                            | 2.05 × 10 <sup>9</sup> N                                                                       | B1         |  |  |
|     | (ii)                                                                                           | use of <i>mgh</i> OR weight × <i>h</i> 1.03 × 10 <sup>12</sup> J NOT ecf from <b>(i)</b>       | C1<br>A1   |  |  |
|     | (iii)                                                                                          | output energy $\div$ input energy OR $6.2 \times 10^{11} \div 1.2 \times 10^{12}$ 0.52 OR 52 % | C1<br>A1   |  |  |
|     |                                                                                                |                                                                                                | [Total: 8] |  |  |

2 Fig. 1.1 shows a car on a roller-coaster ride.

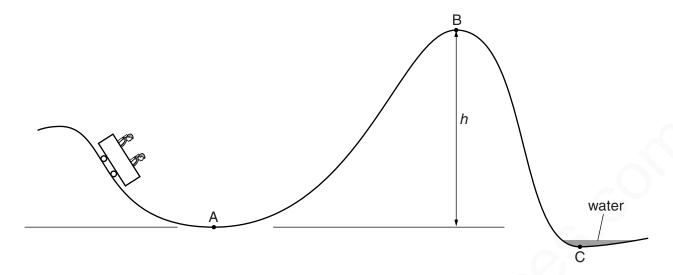



Fig. 1.1

mass of car = 600 kg kinetic energy of car at point A = 160 kJ

(a) Calculate the speed of the car at A.

| speed =[3 |
|-----------|
|-----------|

(b) As the car travels from A to B, it loses 40 kJ of energy due to friction.

The car just manages to roll over the crest of the hill at B.

Calculate the height h.

height 
$$h = \dots [2]$$

| (c) | At C, the car is slowed down by a shallow tank of water and the kinetic energy of the car is reduced to zero. |
|-----|---------------------------------------------------------------------------------------------------------------|
|     | Make <b>three</b> suggestions for what happens to this kinetic energy.                                        |
|     | 1                                                                                                             |
|     | 2                                                                                                             |
|     | 3                                                                                                             |
|     | [3]                                                                                                           |
|     | [Total: 8]                                                                                                    |

------Marking Scheme-----

| (a) | $1/2 mv^2$ correct rearrangement to find $v/v^2$ 23 m/s bald 0.73 scores first two marks                               | C1<br>C1<br>A1 | [3] |
|-----|------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| (b) | use of <i>mgh</i> (= 160 000 – 40 000 = 120 000 J)<br>h = 20 m                                                         | C1<br>A1       | [2] |
| (c) | any three points from: KE of <u>water</u> PE of <u>water</u> sound heat/friction Award one mark for each correct point | В3             | [3] |

Fig. 1.1 shows a simple pendulum being used by a student to investigate the energy changes at various points in the pendulum's swing.

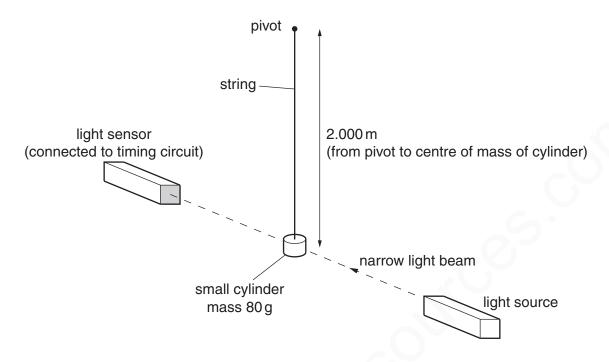



Fig. 1.1

(a) When the string is displaced by a small angle from the vertical, the height of the cylinder changes so that its centre of mass is now 1.932 m below the pivot. Determine the gravitational potential energy gained by the cylinder. Use  $g = 10 \,\text{m/s}^2$ .

gravitational potential energy gained = ......[3]

**(b)** The cylinder is released from the displaced position in **(a)**. Calculate the expected speed of the cylinder when the string is vertical.

expected speed = .....[2]

| (c) A | as the string passes through the vertical, the narrow beam of light is interrupted by the nder for 22 ms. The cylinder has a diameter of 2.5 cm. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)   | Calculate the actual speed of the cylinder.                                                                                                      |
|       |                                                                                                                                                  |
|       |                                                                                                                                                  |
|       | actual speed =                                                                                                                                   |
| (ii)  | Suggest how the difference between the actual and expected speeds could occur.                                                                   |
|       |                                                                                                                                                  |
|       |                                                                                                                                                  |
|       |                                                                                                                                                  |
|       | [3]                                                                                                                                              |
|       | [Total: 8]                                                                                                                                       |
|       |                                                                                                                                                  |
|       |                                                                                                                                                  |
|       |                                                                                                                                                  |

|     | Marking Scheme                                                |                                                                                                                           |                |     |  |
|-----|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------|-----|--|
| (a) | use                                                           | = 0.068 m<br><u>e of</u> <i>mgh</i><br>54 J/Nm                                                                            | C1<br>C1<br>A1 | [3] |  |
| (b) | ) $\frac{1}{2}mv^2$ = candidate's (a)<br>1.2 m/s ecf from (a) |                                                                                                                           | C1<br>A1       | [2] |  |
| (c) | (i)                                                           | use of distance ÷ time = 1.1 m/s                                                                                          | C1<br>A1       |     |  |
|     | (ii)                                                          | air or wind resistance / friction / heat / thermal energy OR correct mention of experimental error e.g. width of cylinder | B1             | [3] |  |

4 Fig. 3.1 shows a water turbine that is generating electricity in a small tidal energy scheme.

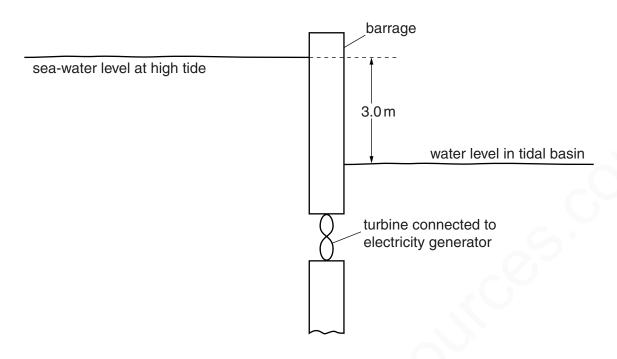



Fig. 3.1

At high tide,  $1.0\,\mathrm{m}^3$  of sea-water of density  $1030\,\mathrm{kg/m}^3$  flows through the turbine every second.

(a) Calculate the loss of gravitational potential energy when 1.0 m<sup>3</sup> of sea-water falls through a vertical distance of 3.0 m.

loss of gravitational potential energy = ......[3]

**(b)** Assume that your answer to **(a)** is the energy lost per second by the sea-water passing through the turbine at high tide. The generator delivers a current of 26 A at 400 V.

Calculate the efficiency of the scheme.

efficiency = .....% [3]

|      | (c) At low tide, the sea-water level is lower than the water level in the tidal basin.                 |
|------|--------------------------------------------------------------------------------------------------------|
| (i)  | State the direction of the flow of water through the turbine at low tide.                              |
|      |                                                                                                        |
| (ii) | Suggest an essential feature of the turbine and generator for electricity to be generated at low tide. |
|      |                                                                                                        |
|      |                                                                                                        |
|      | [2]                                                                                                    |
|      | [Total: 8]                                                                                             |

|     | MARKING SCHEME                                                                                                                                                                                                                                                                                                                                  |                          |              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|
| (a) | (mass flow rate =) $1030  (kg/s)$<br>use of $mgh$<br>loss of GPE = $1030 \times 10 \times 3 = 30900  J$ or Nm ecf from 1st line                                                                                                                                                                                                                 | C1<br>C1<br>A1           | [3]          |
| (b) | output power = $(26 \times 400 =) 10 400 (W)$ efficiency = output (power)/input (power) with/without 100 OR= output/input with/without 100 OR any numbers that clearly show relationship the correct way up is intended efficiency = $(100 \times 10 400/30 900 =) 33.7\%$ at least 2 s.f. allow ecf from <b>(a)</b> and 1st line of <b>(b)</b> | C1<br>C1<br>A1           | [3]          |
| (c) | <ul> <li>(i) from basin/to sea/from right/to left</li> <li>(ii) turbine design allows rotation in both directions         OR meaningful comment on change of pitch         OR generator works when rotating in either direction</li> </ul>                                                                                                      | B1<br>B1<br><b>[Tota</b> | [2]<br>I: 81 |
|     |                                                                                                                                                                                                                                                                                                                                                 | Liota                    | ı. oj        |

An electric pump is used to raise water from a well, as shown in Fig. 3.1.

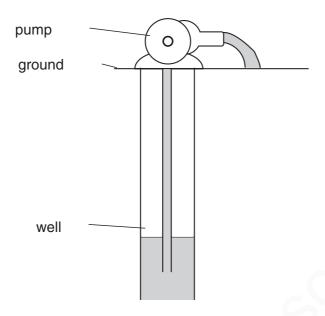



Fig. 3.1

| (a) |       | pump does work in raising the water. State an equation that could be used to sulate the work done in raising the water.             |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------|
|     |       | [2]                                                                                                                                 |
| (b) |       | water is raised through a vertical distance of 8.0 m. The weight of water raised in s is 100 N.                                     |
|     | (i)   | Calculate the work done in raising the water in this time.                                                                          |
|     |       | work done =[1]                                                                                                                      |
|     | (ii)  | Calculate the power the pump uses to raise the water.                                                                               |
|     |       |                                                                                                                                     |
|     |       | power =[1]                                                                                                                          |
|     | (iii) | The energy transferred by the pump to the water is greater than your answer to (i). Suggest what the additional energy is used for. |
|     |       | [1]                                                                                                                                 |

| (a) | work        | <pre>a = force x distance = force of gravity/weight x (vertical) distance/height</pre> | C1<br>A1 | 2        |
|-----|-------------|----------------------------------------------------------------------------------------|----------|----------|
| (b) | (i)<br>(ii) | work = $(100 \times 8) = 800 \text{ J}$<br>power = $(800/5) = 160 \text{ W}$           | A1<br>A1 | 2        |
|     | (iii)       | increases the k.e. of the water (ignore heat/sound)                                    | B1       | 1<br>[5] |

| 6 |     |                                                                                                         | t wishes to work out how much power she uses to lift her body when climbing a stairs.                   |  |  |  |
|---|-----|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
|   |     | er body mass is 60 kg and the vertical height of the stairs is 3.0 m. She takes 12s to walk the stairs. |                                                                                                         |  |  |  |
|   | (a) | Cal                                                                                                     | culate                                                                                                  |  |  |  |
|   |     | (i)                                                                                                     | the work done in raising her body mass as she climbs the stairs,                                        |  |  |  |
|   |     |                                                                                                         |                                                                                                         |  |  |  |
|   |     |                                                                                                         | work =[2]                                                                                               |  |  |  |
|   |     | (ii)                                                                                                    | the output power she develops when raising her body mass.                                               |  |  |  |
|   |     |                                                                                                         |                                                                                                         |  |  |  |
|   |     |                                                                                                         | power = [2]                                                                                             |  |  |  |
|   | (b) | At t                                                                                                    | he top of the stairs she has gravitational potential energy.                                            |  |  |  |
|   |     |                                                                                                         | scribe the energy transformations taking place as she walks back down the stairs d stops at the bottom. |  |  |  |
|   |     |                                                                                                         |                                                                                                         |  |  |  |
|   |     |                                                                                                         |                                                                                                         |  |  |  |
|   |     | •••••                                                                                                   |                                                                                                         |  |  |  |
|   |     |                                                                                                         |                                                                                                         |  |  |  |
|   |     |                                                                                                         | [2]                                                                                                     |  |  |  |

[Total: 6]

------Marking Scheme------

| (a) (i) | work done = force x dist or 600 x 3 or 60 x 3 or fd or mgh | C1         |     |
|---------|------------------------------------------------------------|------------|-----|
|         | work = 1800 J c.a.o. accept j or Nm for unit               | A1         | [2] |
| (ii)    | power = work/time or 1800/12 e.c.f.                        | C1         |     |
|         | power = 150 W e.c.f. accept J/s or NM/s for unit           | A1         | [2] |
| (b)     | P.E. decreases/transformed (ignore mention of KE)          | C1         |     |
|         | all the decrease becomes heat (ignore mention of sound)    | A1         | [2] |
|         |                                                            | [Total: 6] |     |