SMART EXAM RESOURCES ## 0580 EXTENDED MATH # **TOPIC: NUMBERS** # **SUB-TOPIC: WRITING IN STANDARD FORM** SET-5-QP-MS | 1 | (a) | Write 14835 correct to the nearest thousand. | |---|-----|--| | | | | |--| (b) Write your answer to part (a) in standard form. | | 1 | | | | |--|---|--|--|--| |--|---|--|--|--| | (a) | 15000 cao | 1 | | |-----|---------------------|-----|--------------| | (b) | 1.5×10 ⁴ | 1FT | FT their (a) | 2 Write in standard form. (a) 2470 000 **(b)** 0.0079 | [1] | |-----| |-----|[1] | (a) | 2.47×10^6 | 1 | | |-----|----------------------|---|--| | (b) | 7.9×10^{-3} | 1 | | | 3 | Calculate | $(3 \times 10^{-3})^3$. | | |---|-----------|--------------------------|-------| | | Give your | answer in standard | form. | ſ | 1 | 1 | | |---|-----|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|--|---|----|---|--| | • | • • | • | • | • | • | • • | • | • | ٠ | ٠ | • | • | • | • | • | ٠ | • | • | ٠ | ٠ | ٠ | • | • | • | • • | • | • | ٠ | • | ٠ | ٠ | ٠ | ٠ | • | • | • | • | • | • | • | • | • | ٠ | ٠ | | L | L. | J | | |
di Sellevie. | | 1 | |----------------------|---|---| | 2.7×10^{-8} | 1 | | |
 | | | [1] | |------|------|------|------|------|------|------|------|--|--|--|-----| | | | | | | | | | | | | | **(b)** The number 1.467×10^{102} is written as an ordinary number. Write down the number of zeros that follow the digit 7. | (a) | 6.54×10^{-3} | 1 | | |-----|-----------------------|---|--| | (b) | 99 | 1 | | | 5 | Simplify | $2.1 \times 10^p + 2.1 \times 10^{p-1}$. | |---|-----------|---| | J | Give your | answer in standard form. | | [2] | | |-----|---| | 1/ | П | | | Л | | 2.31×10 ^{p} B1 for $21\times10^{p-1}$ or 0.21×10^{p} or answer with figs 231 |
Ī | 1 | Ì | |--|----------------------|---|---| | | 2.31×10^{p} | 2 | | $$z = \dots$$ [2] Work out $2 \times 10^{100} - 2 \times 10^{98}$, giving your answer in standard form.[2] | 1.98×10^{100} | B1 for 200×10 ⁹⁸ or 0.02×10 ¹⁰⁰ or answer with figs 198 | |------------------------|--| | | | Work out $(3 \times 10^{199}) + (2 \times 10^{201})$. Give your answer in standard form.[2] |
1 | I | <u> </u> | |------------------------|---|---| | 2.03×10^{201} | 2 | B1 for figs 203 or $[0].03 \times 10^{201}$ or 200×10^{199} | **8** Calculate $0.04^2 + 0.03 \times 0.28$. Give your answer in standard form.[2] | $1[.0] \times 10^{-2}$ cao | 2 | B1 for 0.01 oe | |---------------------------------------|---|-----------------------| | · · · · · · · · · · · · · · · · · · · | | | **9** Work out $\frac{240^2}{5 \times 10^6}$. Give your answer in standard form. Answer [2] | 1 | | <u> </u> | |--------------------------|---|-----------------------| | $1.15(2) \times 10^{-2}$ | 2 | M1 figs 115(2) | | | | |