RESULTANT FORCE

Fig. 3.1 shows an aeroplane of mass $3.4 \times 10^5 \, \mathrm{kg}$ accelerating uniformly from rest along a runway.

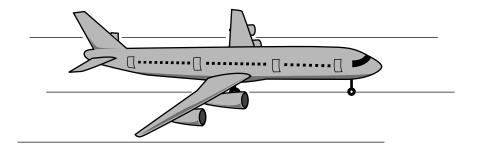


Fig. 3.1

After 26 s it reaches a speed of 65 m/s.

(a) Calculate

constant speed.

1

(i) the acceleration of the aeroplane,

		acceleration =[2	2]
	(ii)	the resultant force on the aeroplane.	
		force =[2	2]
(b)	Just	t after taking off, the aeroplane continues to accelerate as it gains height.	
	(i)	State two forms of energy that increase during this time.	
		1	
		2	2]
	(ii)	State one form of energy that decreases during this time.	
		[1]
	(iii)	State why the total energy of the aeroplane decreases during this time.	

(c) When the aeroplane reaches its maximum height, it starts to follow a curved path at a

State the direction of the resultant force on the aeroplane.

MAI	XIXI.	NG SCITEVIE.			
(a)	(i)	(a =) v/t or 65/26 2.5 m/s ² *Unit penalty applies		C1 A1	
	(ii)	(F =)ma or 3.4 × 10 ⁵ × 2.5 8.5 × 10 ⁵ N *Unit penalty applies	ecf from 3(a)(i) ecf from 3(a)(i)	C1 A1	
(b)	(i)	any two of: KE or GPE or heat/internal en	ergy/thermal energy	B2	
	(ii)			B1	
		thermal energy/sound is lost (to the atmos	phere) or KE <u>of air</u>	B1	
		rpendicular to path or towards centre of circ		B1	[9]
		unit penalty once only			20,
		www.smartex	amresources.com		2

2 Fig. 2.1 is a head-on view of an airliner flying at constant speed in a circular horizontal path. The centre of the circle is to the left of the diagram.

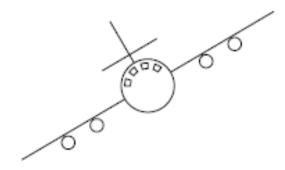


Fig. 2.1

(a)	On Fig. 2.1, draw the resultant force acting on the airliner. Explain your answer.
	[3]

(b) The weight of the airliner is 1.20 × 10⁶ N and there is an aerodynamic lift force of 1.39 × 10⁶ N acting at 30° to the left of the vertical.

By drawing a scale vector diagram, or otherwise, show that the resultant of these two forces is in the same direction as the resultant force you drew in (a).

The speed is constant as the airliner flies in this circular path.
State and explain what is happening to the velocity.
[2]
[Total: 8]

(a)	horizontal by eye arrow to left idea of airliner accelerating/changing direction AND caused by force in that	M1 A1	
	direction o.w.t.t.e. OR centripetal force OR force/acceleration towards centre of circle	B1	[3]
(b)	2 lines approximately length ratio 1.16:1 at 30°/150° to each other parallelogram with line across short diagonal/triangle with original lines at 30° resultant to the left, horizontal by eye for first two marks ignore arrows, ignore labels unless they clarify an otherwise confusing diagram	M1 M1 A1	[3]
	calculation route both forces used in cosine rule 3 rd force from previous line and correct angle used in sine rule calculation shows horizontal resultant	(M1) (M1) (A1)	
(c)	direction changing (therefore) velocity changing or speed/magnitude constant	B1 B1	[2]

3 An object of weight W is suspended by two ropes from a beam, as shown in Fig. 1.1.

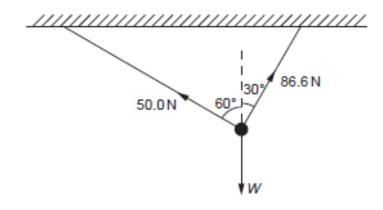


Fig. 1.1

The tensions in the ropes are 50.0 N and 86.6 N, as shown.

(a) In the space below, draw a scale diagram to find the resultant of the two tensions.

Use a scale of 1.0 cm = 10 N.

Clearly label the resultant.

[3]

		resultant =	[1]
(c)	State the direction in which the resi	ultant is acting.	
			[1]
(d)	State the value of W.	W =	[1]
			[Total: 6]

(a)	(parallelogram or triangle may have any orientation) NOT a copy of Fig. 1.1	
	two sides at right angles, by eye one side longer than the other	B1 B1
	diagonal or completion of triangle drawn and labelled "resultant" OR R	
	Ignore numerical values. Condone arrows in wrong direction	B1
(b)	98 N – 102 N (accept value found by calculation)	B1
(c)	(vertically) up/opposite to W NOT North	B1
(d)	his (b) OR correct value calculated	• B1
(-)	ignore mass	
		[Total: 6]

4 Fig. 4.1 shows a heavy ball B of weight W suspended from a fixed beam by two ropes P and Q.

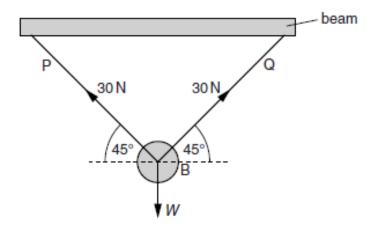


Fig. 4.1

P and Q are both at an angle of 45° to the horizontal. The tensions in P and Q are each 30 N.

(a) In the space below, draw a scale diagram to find the resultant of the tensions in P and Q. Use a scale of 1.0 cm to represent 5.0 N. Label the forces and show their directions with arrows.

		resultant =	[4]
(b)	State the direction of the resultant		[1]
(c)	State the magnitude of W.	magnitude of W=	[1]

[Total: 6]

(a)	2 lines at 90° to each other of same length labelled 30 N or 6 cm	B1
	both lines 6.0 ± 0.2 cm.	B1
	arrows on the two lines drawn, either head to tail OR a complete square shown with diagonal and arrows on adjacent sides	B1
	resultant in range 40–45 N	B1
(b)	(vertically) upwards	B1
(c)	same as value in (a), only if answer to (a) is a force OR 40–45 N	B1
		[Total: 6]

5	(a)	State the factors which completely describe a vector quantity.
		[1]
	(b)	An aeroplane is flying towards the east in still air at 92m/s . A wind starts to blow at 24m/s towards the north.
		Draw a vector diagram to find the resultant velocity of the aeroplane. Use a scale of 1.0 cm = 10 m/s.
		resultant speed =
		angle between resultant and easterly direction =[5]

[Total: 6]

(a)	Size / magnitude (NOT distance) and direction	B1
(b)	Vectors towards East and North with arrows correct by eye Complete triangle or rectangle for candidate's vectors Resultant with correct arrow Resultant 94 to 96 m/s by scale OR 95 m/s by calculation *Unit penalty applies Angle measured 13.5° – 15.5° OR 15° by calculation *Unit penalty applies	B1 B1 B1 B1 B1 [6]
	*Apply unit penalty once only	

6 (a) (i) State the difference between a scalar quantity and a vector quantity.

(ii) State one example of a vector quantity.

(b) Fig. 3.1 shows the top of a flagpole.

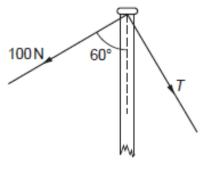


Fig. 3.1

The flagpole is held vertical by two ropes. The first of these ropes has a tension in it of 100N and is at an angle of 60° to the flagpole. The other rope has a tension T, as shown.

The resultant force is down the pole and of magnitude 200 N.

In the space below, using a scale of 1 cm = $20 \, \text{N}$, draw a scale drawing to find the value of the tension T. Clearly label $100 \, \text{N}$, $200 \, \text{N}$ and T on your drawing.

tension T =[3]

[Total: 5]

(ii) any appropriate example (b) NOTE: accept diagram in any orientation; triangle or rectangle with hypotenuse/diagonal of length % that of one side 100, 200 and T all correctly labelled value in range 165 N – 180 N inclusive B1 [5]	(b) NOTE: accept diagram in any orientation; triangle or rectangle with hypotenuse/diagonal of length ½ that of one side 100, 200 and T all correctly labelled	B1 B1
triangle or rectangle with hypotenuse/diagonal of length ½ that of one side B1 100, 200 and T all correctly labelled B1 value in range 165 N – 180 N inclusive B1 [5]	triangle or rectangle with hypotenuse/diagonal of length ½ that of one side 100, 200 and <i>T</i> all correctly labelled	B1