DENSITY-MASS-VOLUME-SET-3-QP

1 Some water is poured into four tubes of different cross-sectional areas. Which tube contains the largest volume of water?
A
B
C
D
area $=10 \mathrm{~cm}^{2}$

area $=20 \mathrm{~cm}^{2}$

area $=30 \mathrm{~cm}^{2}$

area $=40 \mathrm{~cm}^{2}$

2 What are the correct units for force and for weight?

	force	weight
A	kg	kg
B	kg	N
C	N	kg
D	N	N

A metal drum has a mass of 200 kg when empty and 1000 kg when filled with $1.0 \mathrm{~m}^{3}$ of methylated spirit.

What is the density of methylated spirit?
A $0.0050 \mathrm{~kg} / \mathrm{m}^{3}$
B $\quad 0.11 \mathrm{~kg} / \mathrm{m}^{3}$
C $800 \mathrm{~kg} / \mathrm{m}^{3}$
D $\quad 1000 \mathrm{~kg} / \mathrm{m}^{3}$

4
Two identical measuring cylinders containing different liquids are placed on a simple balance.
They balance as shown.

How does the density of X compare with the density of Y ?
A density of $X=\frac{1}{2} \times$ density of Y
B density of $X=$ density of Y
C density of $X=2 \times$ density of Y
D density of $X=4 \times$ density of Y

A stopwatch is used to time an athlete running 100 m . The timekeeper forgets to reset the watch to zero before using it to time another athlete running 100 m .

How long does the second athlete take to run 100 m ?
A 11.2 s
B $\quad 11.4 \mathrm{~s}$
C $\quad 12.4 \mathrm{~s}$
D 23.8 s

Which property of a body can be measured in newtons?
A density
B mass
C volume
D weight

Which of the following is a unit of density?
A $\mathrm{cm}^{3} / \mathrm{g}$
B $\mathrm{g} / \mathrm{cm}^{2}$
C $\mathrm{g} / \mathrm{cm}^{3}$
D $\mathrm{kg} / \mathrm{m}^{2}$

8
The following are distance/time graphs.
Which graph shows an object travelling at constant speed?

A

C

B

D

A solid, rectangular metal block has the dimensions shown.

The mass of the block is 2700 g .
What is the density of the metal?
A $\quad \frac{2700}{25 \times 5} \mathrm{~g} / \mathrm{cm}^{3}$
B $\quad \frac{25 \times 5}{2700} \mathrm{~g} / \mathrm{cm}^{3}$
C $\frac{2700}{25 \times 5 \times 8} \mathrm{~g} / \mathrm{cm}^{3}$
D $\frac{25 \times 5 \times 8}{2700} \mathrm{~g} / \mathrm{cm}^{3}$

The diagram shows a graph with values of mass against volume for four different objects P, Q, R and S .

Which two objects have the same density?
A P and Q
B P and R
C R and S
D S and Q

