SMART EXAM RESOURCES9702 PHYSICS TOPIC QUESTIONS

TOPIC: PHYSICAL QUANTITIES AND UNITS

SUB-TOPIC: ERRORS AND UNCERTAINITIES SUB-SUB-TOPIC: CALCULATE PERCENTAGE AND ABSOLUTE UNCERTAINITY

1	One end of a wire is connected to a fixed point. A load is attached to the other end so that the wire hangs vertically.
	The diameter d of the wire and the load F are measured as
	$d = 0.40 \pm 0.02 \text{mm},$ $F = 25.0 \pm 0.5 \text{N}.$
	The stress σ in the wire is calculated by using the expression

$$\sigma = \frac{4F}{\pi d^2}.$$

(i) Show that the value of σ is $1.99 \times 10^8 \,\mathrm{N\,m^{-2}}$.

(ii) Determine the percentage uncertainty in σ .

percentage uncertainty =% [2]

(iii) Use the information in (b)(i) and your answer in (b)(ii) to determine the value of σ , with its absolute uncertainty, to an appropriate number of significant figures.

 σ = \pm $N m^{-2} [2]$

MARKING SCHEME:					
)(i)	$\sigma = 4 \times 25/[\pi \times (0.40 \times 10^{-3})^2] = 1.99 \times 10^8 \mathrm{N}\mathrm{m}^{-2}$	A1			
/te/	or $\sigma = 25/[\pi \times (0.20 \times 10^{-3})^2] = 1.99 \times 10^8 \text{ N m}^{-2}$				
)(ii)	%F = 2% and %d = 5%	C1			
	or $\Delta F/F = \frac{0.5}{25}$ and $\Delta d/d = \frac{0.02}{0.4}$				
	$\%\sigma = 2\% + (2 \times 5\%)$	A1			
	$\%\sigma = [0.02 + (2 \times 0.05)] \times 100$				
	% σ = 12%				
(iii)	absolute uncertainty = (12/100) × 1.99 × 108	C1			
	$= 2.4 \times 10^7$				
	σ = 2.0 × 10 ⁸ ± 0.2 × 10 ⁸ N m ⁻² or 2.0 ± 0.2 × 10 ⁸ N m ⁻²	A1			

	he resistor is labelled as having a resistance of 125 Ω ± 3%. Calculate the power dissipated by the resistor.
	power = W [2]
(ii)	Calculate the percentage uncertainty in the calculated power.
	percentage uncertainty = % [2]
(iii)	Determine the value of the power, with its absolute uncertainty, to an appropriate number of significant figures.

The potential difference across a resistor is measured as $5.0 \text{ V} \pm 0.1$

power = ± W [2]

MARKING SCHEME:

$P=V^2/R$ or $P=VI$ and $V=IR$	C1
$P = 5.0^2/125$ or 5.0×0.04 or $(0.04)^2 \times 125$	A1
= 0.20 W	
$%V = 2%$ or $\Delta V / V = 0.02$	C1
$%P = (2 \times 2\%) + 3\%$ or $%P = (2 \times 0.02 + 0.03) \times 100$	A1
= 7%	
absolute uncertainty in $P = (7/100) \times 0.20$	C1
= 0.014	
power = $0.20 \pm 0.01 \text{W}$ or $(2.0 \pm 0.1) \times 10^{-1} \text{W}$	A1
	$P = 5.0^2 / 125$ or 5.0×0.04 or $(0.04)^2 \times 125$ = 0.20 W % $V = 2\%$ or $\Delta V / V = 0.02$ % $P = (2 \times 2\%) + 3\%$ or $\% P = (2 \times 0.02 + 0.03) \times 100$ = 7% absolute uncertainty in $P = (7 / 100) \times 0.20$ = 0.014