SMART EXAM RESOURCES CAMBRIDGE LOWER SECONDARY MATHS STAGE 8 TOPIC: INDICES SET-1

¹ Write a number in each box to make each statement correct.

 $8^{0} =$ marie tamiesources.com $8^{15} \div 8^5 = 8^5$

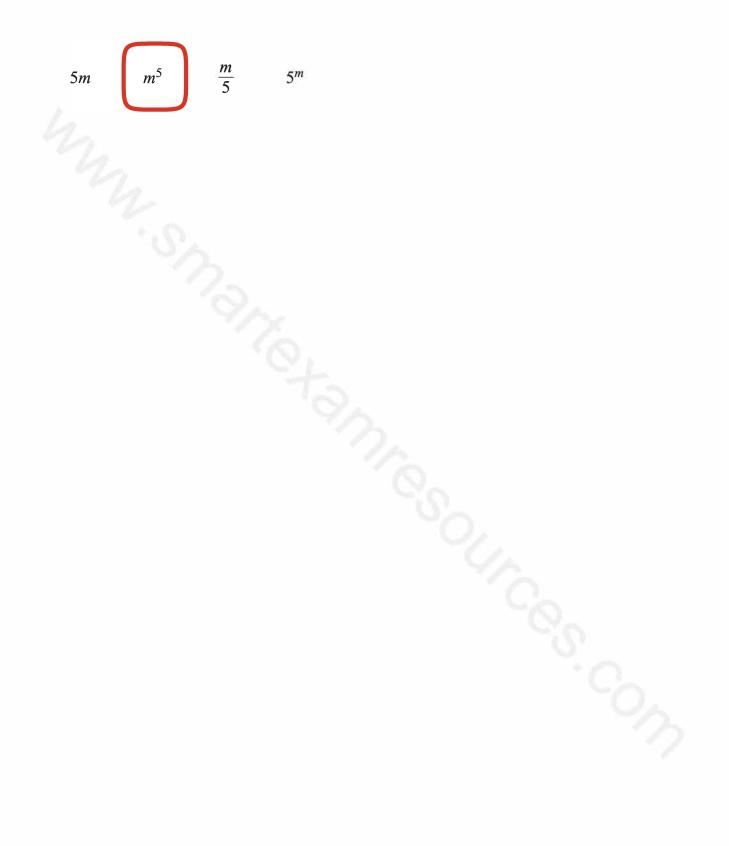
- Find the value of x when $36 \times 56 = 2^x \times 3^2 \times 7$ 2
- ² FL

	Award 1 mark for $36 = 2^2 \times 3^2$ or $56 = 2^3 \times 7$ or for $\frac{36 \times 56}{3^2 \times 7}$ or equivalent or better or for answer 2^5	e.g. $\frac{2016}{63}$ or $\frac{4 \times 8}{1 \times 1}$ or 32

Complete each of these calculations with the correct whole number.

13⁰= Ha² $(2^3)^2 =$

3


Mark Scheme:

64 121		or if \bullet scored, for 2 ⁶ and 11 ² seen.	

4 Put a ring around the expression that is equivalent to $m \times m \times m \times m \times m$

mm. snaketennesources.com

$$5m m^5 \frac{m}{5} 5^m$$
 [1]

