An IGCSE student is investigating the stretching of springs.

Fig. 1.1 shows the apparatus used for the first part of the experiment.

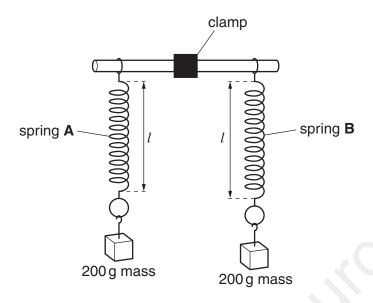


Fig. 1.1

The unstretched length $l_{\mathbf{A}}$ of spring \mathbf{A} is 15 mm.

The unstretched length $l_{\rm B}$ of spring B is 16 mm.

- (a) The student hangs a 200 g mass on each spring, as shown in Fig. 1.1.
 - (i) On Fig. 1.1 measure the new length l of spring **A**.

 $l = \dots mm$

(ii) Calculate the extension $e_{\mathbf{A}}$ of the spring using the equation $e_{\mathbf{A}} = (l - l_{\mathbf{A}})$.

 $e_{\mathbf{A}}$ = mm

(iii) On Fig. 1.1 measure the new length l of spring **B**.

 $l = \dots mm$

(iv) Calculate the extension $e_{\rm B}$ of the spring using the equation $e_{\rm B}$ = $(l-l_{\rm B})$.

 e_{B} = mm [2]

		[1]
(c)		e student tries to find a relationship between T and d . She first suggests that $T \times d$ is onstant.
	(i)	Calculate the values of $T \times d$ and enter the values in the final column of the table.
	(ii)	State whether or not the results support this suggestion and give a reason for your answer.
		Statement
		Reason
		[2]

------Marking Scheme-----

- (a) (i) l = 29 (mm) and l = 31 (mm) (allow 2.9 cm, 3.1 cm) [1] $e_A = 14 \text{ (mm)}$ and $e_B = 15 \text{ (mm)}$ (ecf) (ignore minus signs) [1]
- (b) (i) both l correct to (21.5 22) and 24 [1]
 - (ii) (6.5-7) and 8 (ecf) (ignore minus signs) [1]
 - (iii) $e_{av} = 7.5$ (c.a.o.)
- (c) statement matches readings (expect YES) (ecf NO) [1] justification matches statement and by reference to results (expect within limits of experimental accuracy, wtte) (too different, wtte) [1]