SMART EXAM RESOURCES SUBJECT:COORDINATED SCIENCES [PHYSICS] PAPER 4

TOPIC:MOTION SET 6 QP-MS

1 Fig. 12.1 shows a cyclist.

Fig. 12.1

(a) The cyclist starts from rest and accelerates with constant acceleration.

The cyclist reaches 12 m/s after 20 seconds.

He then continues at this constant speed for 15 seconds.

(i) On Fig. 12.2, plot a speed–time graph for the cyclist.

Fig. 12.2

[2]

	State the unit for your answer.	
		acceleration = unit [3]
(iii)	Describe how to calculate the distance graph.	travelled by the cyclist using the speed-time
		[1]

(ii) Calculate the acceleration of the cyclist during the first 20 seconds.

- 2 (a) A sprinter runs a 200 m race in 25 seconds.
 - (i) Calculate the average speed of the sprinter.

average speed = m/s [2]

(a)(i)	(speed =) d/t or 200/25;	2
(4)(1)	8 (m/s);	_

Fig. 6.1 shows a cheetah.

Cheetahs are the fastest land animal and have a top speed of 30 m/s.

Fig. 6.1

(a)	State the difference between speed and velocity.	
		• •
		1
		. •

(b) Fig. 6.2 shows a speed–time graph for a cheetah's journey.

Fig. 6.2

Describe the motion of the cheetah shown in Fig. 6.2.				
[3]				

. _ _ _ _ _

Question	Answer	Marks
(a)	velocity has direction / ORA;	1
(b)	acceleration; constant followed by non-constant; constant speed / zero acceleration;	3

▲ Fig. 3.2 shows a speed–time graph for the start of the cycle ride.

Fig. 3.2

(i) Show that the maximum speed of the athlete during the first 40 seconds of the cycle ride is $12.5\,\text{m/s}$.

[1]

(ii) Calculate the acceleration of the athlete during the first 25 seconds of the cycle ride. Give your answer in m/s^2 .

acceleration = m/s² [2]

(iii)	Calculate the distance covered by the ride.	e athlete during the	e first 35 seconds	of the cycle
	C	istance =		m [2]

(b)(i)	45000 / 3600 (=12.5 m / s);	1
(b)(ii)	$(a =) \Delta v/t/12.5/25;$ $(a =) 0.5 (m/s^2);$	2
(b)(iii)	(0.5 × 25 × 12.5) + (12.5 × 10); 281.25 (m);	2

Fig. 3.1 shows an insect called a pond skater.

5

Pond skaters spread their weight over their 6 legs so that they can move over the surface of water.

Fig. 3.1

- (a) The pond skater has a mass of 0.25 g and is stationary on the surface of the water.
 - (i) Use the values in the list to complete the sentences about the pond skater.

The gravitational field strength, g, is 10 N/kg.

You can use each value once, more than once or not at all.

0 N	0.0025 kg	0.0025 N	0.25 g	0.25 kg	2.5 N
The weigh	nt of the pond skat	er is			
The force	acting upwards or	n the pond skater	by the water is .		
The result	ant force acting o	n the pond skater	is		[2]

(ii) The pond skater stands on all 6 legs, with the foot of each leg making contact with the surface of the water.

The area of each foot is $1.2 \times 10^{-7} \,\mathrm{m}^2$.

Calculate the pressure exerted by each foot on the surface of the water.

pressure = Pa [2]

(b) The pond skater moves across the surface of a pond.

Fig. 3.2 shows a speed-time graph for part of the pond skater's journey.

Fig. 3.2

- (i) Place an X on Fig. 3.2 to show a time at which the pond skater is travelling at a constant speed.[1]
- (ii) Use Fig. 3.2 to calculate the maximum acceleration of the pond skater.

acceleration = m/s^2 [2]

(b)(i)	X placed between 4.0 and 8.0 s;	1
(b)(ii)	$(a =) \Delta v / \Delta t \text{ or } 0.03 / 4.0 ;$ $(a =) 0.0075 (m / s^2) ;$	2