SMART EXAM RESOURCES 9701 CAMBRIDGE AS CHEMISTRY TOPIC QUESTIONS AND MARK SCHEMES

TOPIC: Analysis

SUB-TOPIC: Mass Spectrometry

SET-2-QP-MS

A sample of strontium, atomic number 38, gave the mass spectrum shown. The percentage abundances are given above each peak.

2	/i\	Complete	the full	alactronic	configurati	onofstrontium.
a	(1)	Complete	me iuii	electronic	comiduran	onoistrontium.

1s ²	$2s^2$	2p ⁶		[1]
-----------------	--------	-----------------	--	----	---

(ii) Explain why there are four different peaks in the mass spectrum of strontium.

F41

(iii) Calculate the atomic mass, A_r , of this sample of strontium. Give your answer to **three** significant figures.

$$A_{r} = \dots [2]$$

Mark Scheme:

(i)
(ii)
(iii)

2

Tumbaga is an alloy of copper and gold. A sample of tumbaga was analysed. The mass spectrum of the sample is shown.

(i) Calculate the percentage abundance of gold, x, in the sample of tumbaga.

x = %

(ii) Calculate the relative atomic mass, A_r , of the copper present in this sample. Give your answer to **two** decimal places.

$$A_{r}$$
 (Cu) = [2]

Mark Scheme:

)(i)	(100 - 56.36 - 25.14) = 18.5(0)
(ii)	M1 correct use of ⁶³ Cu and ⁶⁵ Cu and their % abundance [1]
	M2 ÷ (56.36 + 25.14) AND answer correct to two decimal places [1]