SMART EXAM RESOURCES 9702 PHYSICS TOPIC QUESTIONS

TOPIC: PHYSICAL QUANTITIES AND UNITS SUB-TOPIC: SCALARS AND VECTORS SUB-SUB-TOPIC: VECTOR DIAGRAMS SET-1-QP-MS

A block of wood of weight 25 N is held stationary on a slope by means of a string, as shown in Fig. 1.1.

Fig. 1.1

The tension in the string is T and the slope pushes on the block with a force R that is normal to the slope.

Either by scale drawing on Fig. 1.1 or by calculation, determine the tension T in the string.

_		
T-	 N	เฉา
, –	 1.4	ıvı

MARK SCHEME:

either	triangle / parallelogram with correct shape	C1
	tension = 14 .3 N $(allow \pm 0.5 N)$	A2 [3
	(if > $\pm 0.5N$ but $\leq \pm 1N$, allow 1 mark)	
or R	= 25 cos 35°	(C1)
T	= R tan 35°	(C1)
T	= 14.3 N	(A1)
or T	= 25 sin 35°	(C2)
T	= 14.3 N	(A1)
or R	and Tresolved vertically and horizontally	(C2)
le	ading to $T = 14.3 \mathrm{N}$	(A1)

A force of 7.5 N acts at 40° to the horizontal, as shown in Fig. 1.1.

Fig. 1.1

Calculate the component of the force that acts

(i) horizontally,

horizontal component = N [1]

(ii) vertically.

MARK SCHEME:

(i)	horizontally:	7.5 cos 40° / 7	7.5 sin 50° = 5.7(45) / 5.75	not 5.8N	A1	[1]
\- /				,			

(ii) vertically: $7.5\sin 40^{\circ} / 7.5\cos 50^{\circ} = 4.8(2)N$ A1 [1]

Two strings support a load of weight 7.5 N, as shown in Fig. 1.2.

Fig. 1.2

One string has a tension T_1 and is at an angle 50° to the horizontal. The other string has a tension T_2 and is at an angle 40° to the horizontal. The object is in equilibrium. Determine the values of T_1 and T_2 by using a vector triangle or by resolving forces.

$$T_1 = \dots N$$

$$T_2 = \dots N$$
[4]

MARK SCHEME:

either	correct shaped triangle	M1	
	correct labelling of two forces, three arrows and two angles	A1	
or	correct resolving: $T_2 \cos 40^\circ = T_1 \cos 50^\circ$	(B1)	
	$T_1 \sin 50^\circ + T_2 \sin 40^\circ = 7.5$	(B1)	
$T_1 = 5$.	7(45) (N)	A1	
$T_2 = 4$.	8 (N)	A1	[4]
(allow	± 0.2 N for scale diagram)		

(c) Two tugs pull a tanker at constant velocity in the direction XY, as represented in Fig. 1.1.

Fig. 1.1

Tug 1 pulls the tanker with a force T_1 at 25.0° to XY. Tug 2 pulls the tanker with a force of T_2 at 15.0° to XY. The resultant force R due to the two tugs is 25.0×10^3 N in the direction XY.

(i)	By reference to the forces acting on the tanker, explain how the tanker may be described as being in equilibrium.
	[2]

(ii) 1. Complete Fig. 1.2 to draw a vector triangle for the forces R, T_1 and T_2 . [2]

Fig. 1.2

2. Use your vector triangle in Fig. 1.2 to determine the magnitude of T_1 and of T_2 .

- (i) sum of T₁ and T₂ equals frictional force these two forces are in opposite directions (allow for 1/2 for travelling in straight line hence no rotation / no resultant torque)
- (ii) 1. scale vector triangle with correct orientation / vector triangle with correct orientation both with arrows B1 scale given or mathematical analysis for tensions B1 [2]
 - 2. $T_1 = 10.1 \times 10^3 (\pm 0.5 \times 10^3) N$ A1 $T_2 = 16.4 \times 10^3 (\pm 0.5 \times 10^3) N$ A1 [2]

The velocity vector diagram for an aircraft heading due north is shown to scale in Fig. 1.1. There is a wind blowing from the north-west.

Fig. 1.1

The speed of the wind is $36\,\mathrm{m\,s^{-1}}$ and the speed of the aircraft is $250\,\mathrm{m\,s^{-1}}$.

- (i) Draw an arrow on Fig. 1.1 to show the direction of the resultant velocity of the aircraft. [1]
- (ii) Determine the magnitude of the resultant velocity of the aircraft.

resultant velocity = $m s^{-1}$ [2]

MARKING SCHEME:

(i) arrow to the right of plane direction (about 4° to 24°) B1 [1]

(ii) scale diagram drawn or use of cosine formula $v^2 = 250^2 + 36^2 - 2 \times 250 \times 36 \times \cos 45^\circ$ or resolving $v = [(36\cos 45^\circ)^2 + (250 - 36\sin 45^\circ)^2]^{1/2}$ C1

resultant velocity = 226 (220 – 240 for scale diagram) m s⁻¹ allow one mark for values 210 to 219 or 241 to 250 m s⁻¹ or use of formula ($v^2 = 51068$) v = 230 (226) m s⁻¹

A1 [2]