HOOKE'S LAW-SPRING CONSTANT

A student carried out an experiment to find the spring constant of a steel spring. The apparatus is shown in Fig. 1.1.

Fig. 1.1

The student recorded the unstretched length l_0 of the spring. Then she added loads W to the spring, recording the new length l each time. The readings are shown in the table below.

W/N	l/mm	e/mm
0	30	
1	32	
2	33	
3	36	
4	39	
5	40	
6	42	

$$l_0 = 30 \text{ mm}$$

(a) Calculate the extension e of the spring produced by each load, using the equation

$$e = (l - l_0).$$

Record the values of *e* in the table.

[2]

(b)	Plot the graph of e/mr	n (<i>y</i> -axis)	against W/N	(<i>x</i> -axis).
(/		()		()

(c) Draw the best-fit straight line for the points you have plotted. Calculate the gradient of the line. Show clearly on the graph how you obtained the necessary information.

gradient =[4]

	Marking Scheme			
(a)	Seven correct values: 0, 2, 3, 6, 9, 10, 12 (-1 each error)		2	
(b)	Graph: Scales, labelled, suitable size Axes, right way round Plots to ½ sq (-1 each error)		1 1 2	
(c)	Line shape Line thickness		1	
	Triangle greater than ½ line and method used Correct interpolation to ½ sq		1	
		TOTAL	10	

Fig. 1.1 shows the apparatus used.

Fig. 1.1

(a) On Fig. 1.1, measure the unstretched length l_0 of the coiled part of the spring, in mm.

Record this value of length l in Table 1.1 for $L = 0.00 \,\mathrm{N}$.

[1]

- (b) On Fig. 1.1, show how a set-square could be used to take readings in order to determine the length l_0 of the coiled part of the spring. [1]
- (c) The student places a $0.20\,\mathrm{N}$ load on the spring. He records the new length l of the spring in Table 1.1.

He repeats the procedure using loads of 0.40 N, 0.60 N, 0.80 N and 1.00 N. All the readings are recorded in Table 1.1.

- (i) Calculate the extension e of the spring for each value of load L, using the equation $e = (l l_0)$. Record the values of e in Table 1.1. [1]
- (ii) Complete the column headings in Table 1.1.

Table 1.1

L/	1/	e/
0.00		0
0.20	31	
0.40	40	
0.60	46	
0.80	55	
1.00	63	

[1]

(d) Plot a graph of L/N (y-axis) against e/mm (x-axis).

[4]

(e) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

G =[2]

(f)	The gradient G is numerically equal to the spring constant k .
	Write down a value for k to a suitable number of significant figures for this experiment.
	k =N/mm [1]
	[Total: 11]

MARKING SCHEME

1(a)	$l_0 = 23 \text{ (mm)}$	1
1(b)	recognisable set-square shown from spring to rule along one of the dotted lines	1
1(c)(i)	e values 8, 17, 23, 32, 40	1
1(c)(ii)	N, mm, mm	1
1(d)	Graph:	
	axes correctly labelled and right way round	1
	suitable scales, at least ½ the grid used	1
	all plots correct to ½ small square	1
	good line judgement, thin, continuous line	1
1(e)	triangle method used and seen on graph	1
	at least half of candidate's line used	1
1(f)	answers within the range 0.025 ± 0.005 (N/mm) and expressed to $2/3$ significant figures only	1

A student is determining the spring constant *k* of a spring by two methods.

Fig. 1.2 shows how the apparatus is used.

Method 1

(a) On Fig. 1.1, measure the unstretched length l_0 of the spring, in mm.

Fig. 1.1

 $l_0 = \dots mm [1]$

(b) The student attaches the spring to the clamp as shown in Fig. 1.2.

He hangs a 300 g mass on the spring.

Fig. 1.2

He measures the new length l of the spring.

	(i)	Calculate the extension e of the spring u	using the equation $e = l - l_0$.	
	(ii)	Calculate a value for the spring constan	e = mm the state of the equation $k = \frac{F}{e}$, where F = 3.0 N.	
Me	thod	2	<i>k</i> = N/mm	[1]
(c)	The		stance and releases it so that it oscillates up a complete oscillations.	ากต
		00:03		
	(i)	Fig. 1. Record the time <i>t</i> taken for 10 complete		
	(1)	Trecord the time ranker for to complete		[1]
	(ii)	1. Calculate the time T taken for one of	complete oscillation.	
			T =	
		2. Calculate T^2 .	_0	
			T ² =	[2]
	(iii)	Calculate the spring constant k using the	e equation $k = \frac{0.040 m}{T^2}$, where $m = 0.300 \text{kg}$.	
			k – N/mm	[1]

(d)	State and explain whether your two values for <i>k</i> are the same within the limits of experimenta accuracy.
	statement
	explanation
	[2
(e)	A student states that repeating Method 1 with different masses would improve the reliability of the value obtained for k .
	Suggest additional values for the mass m that you would use when repeating the experimento improve the reliability.
	[2
	[Total: 11

MARKING SCHEME

1(a)	l ₀ = 22 (mm)		1
1(b)(i)	e = 31 (mm) ecf allowed		1
1(b)(ii)	k = 0.0968 (N / mm) ecf allowed		1
1(c)(i)	t = 3.46 (s)		1
1(c)(ii)	$T = 0.346$ (s) $T^2 = 0.12$ (0.1197)		1
	units s and s ²		1
1(c)(iii)	<i>k</i> = 0.1		1
1(d)	Statement matches results		1
	Idea of within (or beyond) limits of experimental accuracy <u>explained</u> , e.g. close (enough), very close, nearly the same; (too) far apart)	1
1(e)	At least 3 additional values given		1
	Values between 50 g and 600 g		1