
The IGCSE students are carrying out measurements in order to determine the density of water using two methods.

(a) Method 1

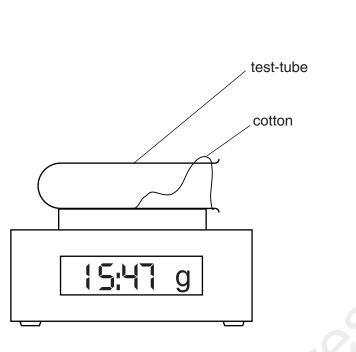
Fig. 1.1 shows an empty measuring cylinder on a balance and Fig. 1.2 shows the measuring cylinder containing water.

(i) Read and record the mass m_1 of the empty measuring cylinder.

(ii) Read and record the mass m_2 of the measuring cylinder and water.

$$m_2 = \dots g$$

Read and record the volume V_1 of water, as shown in Fig. 1.2.


Calculate a value ρ_1 for the density of water using your readings from (a)(i), (ii) and (iii) and the equation $\rho_1 = \frac{m_2 - m_1}{V_1}$. Give an appropriate unit.

$$\rho_1 = \dots$$
 [3]

1

(b) Method 2

In this method, a test-tube is floated in the water left in the measuring cylinder from Method 1 and the change in water level is measured.

cm³ 100 80 60 40

Fig. 1.3

Fig. 1.4

(i) Read and record the mass m_3 of the test-tube, as shown in Fig. 1.3.

$m_3 =$	

(ii) The test-tube is carefully lowered, by means of a piece of cotton, into the measuring cylinder until it floats as shown in Fig. 1.4. Read and record the new water level V_2 in the measuring cylinder.

(iii) Using your results from (a)(iii) and (b)(ii), calculate V_3 , the change in the water level, where $V_3 = (V_2 - V_1)$.

(iv) Calculate and record a value ρ_2 for the density of water using the equation $\rho_2 = \frac{m_3}{V_3}$.

(c)	Calculate an average value $ ho_{ m AV}$ for the density of water using your results fro(a)(iv) and
	(b)(iv).
	$ ho_{AV}$ =[1
(d)	Suggest a precaution that should be taken in Method 1 to ensure that the volume reading is
	as accurate as possible.
	[1
(e)	Suggest a possible source of experimental inaccuracy in Method 2, other than with the
	volume reading.
	State and explain the effect that this would have on your value for ρ_2 .
	suggestion
	suggestion
	effect and explanation
	[2
	[Total: 10
	[Total: To

	Marking Scheme	4
(a)(i)(ii)	$m_1 = 40.68(g)$ and $m_2 = 113.60(g)$ correct answer only (not 40:68, 113:60)	[1]
(iii)	$V_1 = 72 \text{ (cm}^3\text{) correct answer only}$	[1]
(iv)	ρ_1 with unit of g/cm³ or kg/m³ seen in (a), (b) or (c) and not contradicted (unit must match value)	[1]
(b)(i)(ii)	$m_3 = 15.47(g) \underline{\text{and}} V_2 = 88 (\text{cm}^3) \text{correct answer only}$	[1]
(iii)	$V_3 = 16 (\text{cm}^3)/\text{ecf}$	[1]
(iv)	$ ho_2$ to 2/3 sig. figs.	[1]
(c) ρ _{AV}	0.99(1) (g/cm³) or 991/990 (kg/m³) or ecf from (a) and (b)	(1)
(d) any • •	one from: take reading perpendicularly/at right angles to scale read bottom of meniscus other suitable precaution	[1]
e.a.	propriate source of inaccuracy, other than in (d) balance not at zero/test-tube catches on side of measuring cylinder	[1]
mat e.g.	tching effect on $ ho$ with explanation . $ ho$ greater as volume smaller	[1]
	tching effect on <i>ρ</i> with explanation . <i>ρ</i> greater as volume smaller	[Total: 10]