DETERMINING THE MASS OF AN OBJECT 1 Some students are determining the mass of a block U by a balancing method. They are using the apparatus shown in Fig. 1.1. Fig. 1.1 the student could overcome this difficulty. You may draw a diagram. (a) One student places the metre rule on the pivot at the 50.0 cm mark and then places block U with its centre at the 5.0 cm mark. Suggest why it might be difficult to place block U accurately at the 5.0 cm mark. Explain how | [1 | |----| (b) (i) The student places block M on the metre rule as shown in Fig. 1.1 and adjusts the position of block M until the metre rule is as near to being balanced as possible. Briefly describe a method to find the position at which the metre rule is as near to being balanced as possible. |
 |
•••• |
 |
 |
 |
 |
 |
 | |
 |------|----------|------|------|------|------|------|------|---------|------|------|------|------|------|------|------|--------| |
 |
 | | | | | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | | | | [1] | |
 • • • • |

1. | (ii) The student determines the distance *a* between the centre of block U and the pivot. He also determines the distance *b* between the centre of block U and the centre of block M. He repeats the procedure for positions of block U at the 10.0 cm, 15.0 cm, 20.0 cm and 25.0 cm marks. His results are shown in Table 1.1. Table 1.1 | position of block U/cm | a/cm | b/cm | |------------------------|------|------| | 5.0 | 45.0 | 65.5 | | 10.0 | 40.0 | 59.0 | | 15.0 | 35.0 | 51.8 | | 20.0 | 30.0 | 45.0 | | 25.0 | 25.0 | 38.6 | Plot a graph of b/cm (y-axis) against a/cm (x-axis). You do not need to start the axes at the origin (0,0). | (c) | (i) | Determine the gradient ${\it G}$ of the graph. Show clearly on the graph how you obtained the necessary information. | |-----|------|---| | | | G =[1] | | | (ii) | Calculate the mass $M_{\rm U}$ of block U using the equation $M_{\rm U} = (G-1) \times k$, where $k=200\rm g$. | | | | | | | | Record the value of $M_{\rm U}$ to a suitable number of significant figures for this experiment. | | | | $M_{\rm U} =$ [2] | | (d) | Sta | tudent suggests that <i>a</i> and <i>b</i> are proportional. te whether the results support this suggestion. tify your statement by reference to some results from Table 1.1. | | | | | | | stat | ement | | | just | ification | | | | | | | | | | | | [2] | | | | [Total: 11] | ## MARKING SCHEME | (a) | (difficult to see centre of block) and valid method, e.g. (measure width of block and) add ½ width to 5.0 cm to find position for edge of block mean value of marks at both edges of mass mark centre line of mass and align with mark on rule | 1 | |---------|---|---| | (b)(i) | move block back and forth to find the point of balance / owtte | 1 | | (b)(ii) | graph: | | | | axes labelled correct orientation, with quantity and unit | 1 | | | appropriate scales (plots occupying at least ½ grid) | 1 | | | plots all correct to less than ½ small square and precise plots | 1 | | | well-judged line and thin line | 1 | | (c)(i) | G present and triangle method seen on graph | 1 | | (c)(ii) | M _U in range 61.0 to 81.0 (g) | 1 | | | 2/3 sig figs and unit | 1 | | (d) | a and b are proportional | 1 | | | b/a constant within limits of experimental accuracy / owtte | 1 |