SMART EXAM RESOURCES IGCSE PHYSICS ATP- TOPIC QUESTIONS+MARKSCHEMES

STRETCHING OF SPRINGS

A student investigates the stretching of a spring.

The apparatus is shown in Fig. 1.1.

Fig. 1.1

(a) (i) On Fig. 1.1, take two readings from the metre rule to determine the unstretched length l_0 of the coiled part of the spring.

cm	reading 1
cm	reading 2
cm	<i>l</i> ₀ =

(ii) Draw a diagram to show clearly how you would use a set square to obtain an accurate reading from the metre rule.

(b)	The student suspends a load of $P = 1.0 \mathrm{N}$ from the spring.
	He records the new length l_1 of the coiled part of the spring.
	$l_1 = \frac{2.2}{1}$ cm
	Calculate the extension e_1 using the equation $e_1 = (l_1 - l_0)$.
	e ₁ =cm
	Calculate a value for the spring constant <i>k</i> of the spring using the equation
	$k = \frac{P}{e_1}$.
	Include the unit.
	k =
	[2]
(c)	The student suspends a load of $P = 5.0 \mathrm{N}$ from the spring.
	He records the new length $\it l_{\rm 5}$ of the coiled part of the spring.
	$l_5 = \dots 6.3 \dots cm$
	Calculate the extension e_5 using the equation e_5 = $(l_5 - l_0)$.
	e ₅ =cm
	Calculate a second value for the spring constant <i>k</i> of the spring using the equation

 $k = \frac{P}{e_5}$.

Give your answer to two significant figures.

[2]

k =

(d)		e whether your two values of the spring constant k can be considered equal within the s of experimental accuracy.
	Exp	ain your answer by referring to your results.
	state	ement
	expl	anation
))	[1]
(e)	A st	udent improves the experiment by taking additional sets of readings.
	(i)	Suggest the additional apparatus that the student uses.
		[1]
	(ii)	Suggest how the student uses the additional results.
		[1]
		[Total: 11]

MARK SCHEME:

Question	Answer	Marks
1(a)(i)	21.3 (cm)	1
	22.8 (cm) (or the other way round)	1
	l ₀ = 1.5 (cm)	1
1(a)(ii)	set square method clearly shown	1
1(b)	correct calculation of k; P divided by candidate's e ₁ quoted to 2 or more significant figures	1
	N/cm	1
1(c)	e ₅ = 4.8 (cm)	1
	k given to 2 significant figures	1
1(d)	statement to match results and explanation to match statement	1
1(e)(i)	additional load(s)	1
1(e)(ii)	plot a graph OR take an average	1

2 A student investigates the stretching of a spring.

Fig. 1.1 shows the set-up.

(a) The value l_0 is the length of the spring when the load L is 0.0 N.

The student measures the length l_0 of the spring. She records l_0 = 16 mm in Table 1.1.

Draw a diagram of the spring to show clearly the length l_{0} of the spring.

[1]

(b) The student suspends a load $L = 0.20 \,\mathrm{N}$ from the spring. She records the new length l of the spring in Table 1.1.

She repeats the procedure using loads $L = 0.40 \,\mathrm{N}, \, 0.60 \,\mathrm{N}, \, 0.80 \,\mathrm{N}$ and $1.00 \,\mathrm{N}$. The readings are shown in Table 1.1.

(i) Calculate the extension e of the spring for each load using the equation $e = (l - l_0)$.

Record the values of e in Table 1.1.

[2]

Table 1.1

(ii) Complete the column headings in Table 1.1.			
		Table 1.1	
	L/	1/	e/
4.0	0.00	16	0
×0,	0.20	18	
	0.40	21	
	0.60	23	
5	0.80	24	
il.	1.00	26	
in the second			
(c) Plot a graph of L (y-axi	s) against e	e (x-axis).	
Draw the best-fit line.			

[1]

[4]

(d) Use the graph to determine $e_{\rm A}$, the extension produced by a load of 0.50 N. Show clearly on the graph how you obtained the necessary information.

$$e_A =$$
 [3]

[Total: 11]

MARK SCHEME:

Question	Answer	Marks
(a)	diagram clearly showing the distance I ₀ marked	1
(b)(i)	second e value: 2	1
	remaining e values: 5, 7, 8, 10	1
(b)(ii)	N, mm, mm cao	1
(c)	graph: • axes correctly labelled with quantity and unit and the right way round	1
	• suitable scales filling $\geq \frac{1}{2}$ the grid between the extreme plotted points	1
	six plots correct to ½ small square – origin must be included	1
	good line judgement, thin, continuous line	1
(d)	correct method shown clearly on graph	1
	candidate's value read correctly to ½ small square	1
	5.2 ± 0.2 (mm)	1

A student investigates the stretching of a spring.

Fig. 1.1 shows the apparatus.

Fig. 1.1

- (a) The metre rule is clamped in position near to the spring.
 - (i) Write down the scale readings in mm from the metre rule at the top and bottom of the spring, as shown in Fig. 1.1.

- (ii) Using the two readings, calculate the length l_0 of the spring in mm. Record l_0 in Table 1.1. The value l_0 is the length of the spring when the load $L=0.00\,\mathrm{N}$.
- **(b)** The student suspends a load $L = 0.20 \,\mathrm{N}$ from the spring. He records the new length l of the spring in Table 1.1.
 - (i) Use the equation $e = (l l_0)$ to calculate the extension e of the spring. Record the value of e in Table 1.1. [1]

- Complete the extension column heading in Table 1.1.
- (c) The student repeats the procedure using loads $L = 0.40\,\mathrm{N}, L = 0.60\,\mathrm{N}, L = 0.80\,\mathrm{N}$ and $L = 0.60\,\mathrm{N}$ 1.00 N. He records the readings and results in Table 1.1.

Table 1.1

L/N	l/mm	e/
0.00		0
0.20	17	
0.40	20	5
0.60	23	8
0.80	25	10
1.00	28	13

MAN SINDIFE TO Plot a graph of e/mm (y-axis) against L/N (x-axis).

[4]

(d) Fig. 1.2 shows the unstretched spring and the spring with a load. On Fig. 1.2, show clearly the distances l_0 , l and e.

Fig. 1.2

[2]

[Total: 11]

MARK SCHEME:

Question	Answer	Marks
(a)(i)	439 / 43.9	1
	454 / 45.4 and both answers with correct unit	1
(a)(ii)	$I_0 = \text{top - bottom}$	1
(b)(i)	439 / 43.9	1
(b)(ii)	454 / 45.4 and both answers with correct unit	1
(c)	Graph: Axes correctly labelled with quantity and unit and right way round	1
	Suitable scales	1
	All <u>SIX</u> plots (including 0, 0) correct to ½ small square	1
	Good line judgement, thin, continuous line	1
(d)	l and l_0 clear and correct	1
	e clear and correct	1