PARTICULATE NATURE OF MATTER-SET-1-QP-MS

(a)	Dolp	Dolphins communicate with each other under water using sound waves.		
	(i)	Sound waves travel through water as a series of compressions and rarefactions.		
		Describe the difference between a compression and a rarefaction.		
		[1]		
	(ii)	The speed of sound in air is 330 m/s. In water the speed of sound is about 1500 m/s.		
		Suggest why the speed of sound is greater in water than in air. Use ideas about the distances between molecules and the movement of molecules in your answer.		
		[2]		
(b)	The	water in the sea is heated by the Sun.		
	Son	ne molecules of the water evaporate. The water does not boil.		
	Stat	te two ways in which boiling differs from evaporation.		
	1			
	2			
		[2]		

(c) Fig. 9.1 shows three different ways in which particles may be arranged in substances.

Fig. 9.1

Water in the sea is a liquid and water in the air is a gas.

(i)	State which diagram best represents the way particles are arranged in liquid water.		
	Explain your answer.		
	diagram		
	explanation		
		. [1]	
(ii)	State which diagram best represents the way particles are arranged in gaseous air.		
	Explain your answer.		
	diagram		
	explanation		
		. [1]	

MARKING SCHEME

(a)	(i)	compression – region of high pressure/particles are closer together/particles are more dense; OR rarefaction – region of low pressure/particles more spread out/particles less dense;	re [1]
	(ii)	particles closer together; particles, pass on vibrations/collide, more quickly/time between collisions short	er; [2]
(b)	eva boil moi eva req eva	aporation can occur at any temperature/boiling only happens at the boiling point; aporation happens only at the surface/boiling happens throughout the liquid; ling takes energy in (endothermic) to occur/evaporation lets only the elecules with the highest kinetic energy out; aporation can occur using the internal energy of the system/while boiling uniters an (external) source of heat; aporation produces cooling/boiling does not produce cooling; aporation is a slow process/boiling is a rapid process;	[max 2]
(c)	(i)	B because most particles are touching / closely packed and randomly arranged	; [1]
	(ii)	C because particles are widely spaced and randomly arranged;	[1]
			Total: 7]

Table 1.1

element	group number in number of outer Periodic Table electrons in one atom		reactive or unreactive
A	1		
В	7		reactive
С		8	60

(a) Add the five missing pieces of information to complete Table 1.1.

[3]

(b) The diagrams, **D**, **E** and **F**, in Fig. 1.1 show the structures of three materials.

D E F

Fig. 1.1

Deduce which diagram shows an alloy and explain why.

diagram showing an alloy

explanation

(c) Fig. 1.2 shows a small piece of sodium reacting in ethanol at 25 °C. In this reaction hydrogen gas is given off.

Fig. 1.2

(i)	State how the rate of reaction in Fig. 1.2 would be different if the temperature of the ethanol was 10 $^{\circ}\text{C}.$
	Explain your answer in terms of collisions between particles.
	[3]
(ii)	The total volume of hydrogen produced by the reaction shown in Fig. 1.2 is 8.4 cm ³ .
	Calculate the number of moles of hydrogen in 8.4 cm ³ . The molar volume of gas at 25 °C is 24 dm ³ .
	Show your working.

number of moles =[2]

MARKING SCHEME

(a)	element	Group number in Periodic Table	Number of outer electrons in one atom	reactive/unreactive
	Α	(1)	1	reactive
	В	(7)	7	(reactive)
	С	0	(8)	unreactive

(1 for each column correct);;; (b) (D) an alloy is a mixture of metals; E is not a mixture/is only one substance/is pure/single metal; F does not show metals/is a mixture of gases/is a mixture of compounds; [max 2] (c) (i) reaction rate is lower; (ethanol) molecules have lower average energy/are moving more slowly; so frequency of collision with sodium is lower; lower chance of successful collision; R: there are fewer collisions [max 3] (ii) molar volume 24 000 cm³; $8.4 \div 24\,000 = 0.00035$: (allow 1 mark for 8.4 ÷ 24 = 0.35) OR volume of hydrogen 0.0084 dm3 $0.0084 \div 24 = 0.00035$: [2]

6

[Total: 10]

		aluminium	copper	glass	iron	plastic
	Fror	n the list choose one	material to mate	h each descrip	otion below.	
	Eac	h material can be use	ed once, more th	an once or not	at all.	
	•	It can be charged by	rubbing with a c	loth.		
	•	It can be used as the	e core in a transf	ormer.		
	•	It can be used to ma	ke a lens.			
	•	It is used as the con-	ductor in the win	dings of a trans	sformer	[2]
						[2]
(b)	One	nuclide of iron is rep	resented in nucli	de notation as	⁵⁴ ₂₆ Fe.	
	(i)	For one neutral atom	n of $^{54}_{26}$ Fe, state it	s nucleon num	ber.	
						[1]
	(ii)	Another isotope of ir	on has two more	neutrons in th	e nucleus.	
		Use similar notation	to that used in (k	o)(i) to represe	nt this nuclid	le.
						[1]
	(iii)	An isotope of iron is	radioactive. It ha	s a half-life of 2	2.73 years.	
		State what is meant	by the term half-	life.		
						[1]
(c)	The	boiling point of iron is	s 2862°C Some	iron evanorate	s at a temne	erature below this
(0)		cribe one difference		•	·	rature below triis.
	263	ondo one amerende	σοιποση σναροιά		-	
						[1]
	•••••					

7

(d) Fig. 7.1 shows an iron bar suspended by a string.

A magnet is brought close to the iron bar. The iron bar is attracted to the magnet.

Fig. 7.1

Explain why the iron bar is attracted to	the magnet.

(e) Iron is an example of a solid at room temperature.

The three diagrams A, B and C in Fig. 7.2 show the different arrangements of particles in the three states of matter.

(f)

FIg. 7.2
Use the correct letter A , B or C from Fig. 7.2 to fill in the blank and complete the statement to explain your choice.
Diagram shows solid iron because the particles
[1]
A student is trying to calculate the density of an irregular piece of iron.
To do this he must measure the mass and the volume of the piece of iron.
Describe how the student could measure the volume of the piece of iron using a measuring cylinder.

MARKING SCHEME

	iron glass/plastic	
	copper 4 correct = 2 marks, 3 or 2 correct = 1 mark ;;	[2]
(b)	(i) 54;	[1]
	(ii) ⁵⁶ ₂₆ Fe	[1]
	(iii) time taken for a sample of radioactive isotope to decay by half time taken for count rate of radioactive isotope to decrease by	
(c	evaporation can occur at any temperature/ boiling only happens at the boiling point;	
	evaporation happens only at the surface / boiling happens throughout the liquid;	
	evaporation lets only the molecules with the highest kinetic energy boiling taken energy in (endothermic) to occur;	out/
	evaporation can occur using the internal energy of the system/ boiling requires an external source of heat;	
	evaporation produces cooling / boiling does not produce cooling ;	
	evaporation is a slow process/ boiling is a rapid process;	[max 1]
(d	I) reference to induced magnetism;	[1]
(e	e) A (no mark) regular arrangement;	[1]
(f)	workable method of measurement of displacement; ref to displacement/subtraction of two volumes;	[2]
		[Total: 10]