SMART EXAM RESOURCES

SUBJECT:COORDINATED SCIENCES [PHYSICS] PAPER 4

TOPIC: MOTION SUB-TOPIC: MOMENT OF A FORCE SET 2 QP-MS

1 Fig. 3.3 shows the pedal of the bicycle as the athlete pedals.

Fig. 3.3

The moment of the force applied by the athlete is 35.7 Nm.

Use Fig. 3.3 to calculate the force exerted by the athlete on the pedal.

force = N [2]

	And the second s	l
	(force =) moment / distance / 35.7 / 0.17; (force =) 210 (N);	2
_		-

(a) Fig. 9.1 shows a butterfly resting on a leaf attached to the branch of a tree.

2

Fig. 9.1

(i)	State the name of the force labelled F .	
		[1]

(ii) The leaf will break off the branch if the moment about the pivot point ${\bf X}$ is greater than 0.14 N cm.

The leaf does not break off the branch when the butterfly rests on it.

Calculate the maximum mass of the butterfly.

The gravitational field strength, g, is 10 N/kg.

maximum mass =kg [3]

(a)(i)	weight;	
(a)(ii)	(weight =) moment / distance / 0.14 / 5.0; (weight =) 0.028 (N); (mass = W/g = 0.028 / 10 =) 0.0028 (kg);	

Some students are investigating moments and turning effects. Fig. 6.1 shows a beam of uniform density in equilibrium. The beam has a mass of 20 g on one end and a stone on the other.

Fig. 6.1

(a)	State the meaning	of the word	equilibrium.
-----	-------------------	-------------	--------------

[1]

(b) (i) Calculate the weight of the 20 g mass. gravitational field strength g = 10 N/kg

(ii) Calculate the mass of the stone.

State the unit for your answer.

5

Question	Answer	Marks
(a)	no resultant force and no resultant turning effect;	1
(b)(i)	0.02 or 20 × 10 ⁻³ (kg); (W =) mg or 0.02 × 10; 0.2 (N);	3
(b)(ii)	clockwise moment = force \times distance or 0.2 \times 0.25 or 0.05; anti-clockwise moment = clockwise moment; F = 0.05 \div 0.19 or 0.263 / m = 0.263 \div 10 or 0.026 (kg) or 26 (g); g / kg;	4

Fig. 3.1 shows a crane lifting a wooden crate.

Fig. 3.1

- (a) The crane is in equilibrium.
 - (i) The 1200 N counterweight is 5.0 m away from the pivot.

Calculate the moment of the counterweight about the pivot.

moment = Nm [2]

(ii) Determine the moment of the crate about the pivot.

moment =Nm [1]

Question	Answer	Marks
(a)(i)	(M =) F × d OR 1200 × 5 ; (M =) 6000 (Nm) ;	2
(a)(ii)	6000;	1

Fig. 3.1 shows a man transporting some luggage in a small boat.

5

Fig. 3.1

The man lifts the boat off the water and attaches it to a trolley.

The man exerts a downwards force **F** which keeps the boat in equilibrium as shown in Fig. 3.3.

The wheels of the trolley act as a pivot.

Fig. 3.3

Use the principle of moments to calculate the size of the force **F**.

force = N [3]

_	Other Other Control of the Control o	
	(M =) f × d or 600 × 40 or 24000 (Ncm) ; (F =) 24000 / 100 ; (F =) 240 (N) ;	3