## **SMART-EXAM-RESOURCES**

## CAMBRIDGE LOWER SECONDARY CHECKPOINT PRACTICE QUESTIONS AND MARK SCHEMES

### Subject: Physics

### **TOPIC: Electric Circuits**

### Set-1

(a) Fig. 8.1 shows a circuit containing a 6V lamp, two switches and a 6V motorcycle battery. The lamp has a resistance of  $10\Omega$  when it is glowing normally.



Fig. 8.1

How can the lamp be made to light up at normal brightness? Tick the box alongside any action which will do this.



1

(b) Fig. 8.2 shows a similar circuit, but the switches are arranged in parallel.



Fig. 8.2

How can the lamp be made to light up at normal brightness? Tick the box alongside any action which will do this.



[2]

[1]

(c) The lamp is now connected to a 12V car battery, as shown in Fig. 8.3.



(a) close both S1 and S2 ticked B1 (b) any 1 ticked C1 all 3 ticked A1 (c) lamp would blow OR too much voltage/current B1 2 A student has devised the circuit in Fig. 7.1 to control the lighting of three lamps, A, B and C.



Fig. 7.1

More than one switch must be closed in order to light any lamp.

(a) In the table below, put ticks to indicate which switches **must** be closed in order to light the lamps. The first row has been completed for you.

| la mun alle ad ta 154 | switches closed |   |   |   |   |  |
|-----------------------|-----------------|---|---|---|---|--|
| iamp that is in       | 1               | 2 | 3 | 4 | 5 |  |
| lamp A only           | 1               | 1 | ✓ |   |   |  |
| lamp B only           |                 |   |   |   |   |  |
| lamp C only           |                 |   |   |   |   |  |
|                       |                 | 1 | 1 | 1 |   |  |

(b) All the switches are now closed.

| Which of the lamps light up?[1] |
|---------------------------------|
|---------------------------------|

(c) Which one switch must be open to ensure that none of the lamps light up? ......[1]

[Total: 5]

| IARK SCH            | IEME:               |                 |   |   |              |  |
|---------------------|---------------------|-----------------|---|---|--------------|--|
| ı)                  | C                   | 0               |   |   |              |  |
| Lawren 4h at ia 1it |                     | switches closed |   |   |              |  |
| lamp that is lit    |                     | 2               | 3 | 4 | 5            |  |
| lamp A only         | <ul><li>✓</li></ul> | ~               | ~ |   |              |  |
| lamp B only         | ~                   | ~               |   | ~ |              |  |
| lamp C only         | ~                   |                 |   |   | $\checkmark$ |  |

√

B1

B2

B1

B1

 $\checkmark$ 

ignore any additions for lamp A for C allow B1 only for  $\checkmark$ 

(b) all of them OR A, B and C

(c) (switch) 1

A student connects the circuit shown in





When operating normally, the lamp has a resistance of  $10\Omega$ .

(a) (i) State the current in the lamp when both  $S_1$  and  $S_2$  are open.

.....[1]

(ii) The student closes switch  $S_1$ .

Calculate the current in the lamp, stating the unit of your answer.

3

(ii) In the space below, redraw the circuit of Fig. 8.1, including the component for varying the lamp brightness.

[2]

[Total: 9]

| (a) (i)      | nothing/zero/0                                                     | B1         |
|--------------|--------------------------------------------------------------------|------------|
| <b>(</b> ii) | V = IR or $V/R$ in words, symbols or numbers                       | C1         |
|              | 6/10                                                               | C1         |
|              | 0.6                                                                | A1         |
|              | A OR amp(s) OR ampere(s)                                           | B1         |
| (iii)        | candidate's (a)(ii)                                                | B1         |
| (b) (i)      | <u>variable</u> resistor <b>OR</b> rheostat                        |            |
|              | OR potential divider                                               | B1         |
| <b>(</b> ii) | neat, correct circuit with one added component in series with lamp | B1         |
|              | correct symbol for <u>variable</u> resistor                        | B1         |
|              |                                                                    |            |
|              | /                                                                  | [Total: 9] |

The electric circuit in Fig. 8.1 contains a cell, two resistors and another component.





- (a) (i) Name the component that is shown in Fig. 8.1 by the symbol
  - (ii) What is the function of this component in the circuit?

(b) (i) What flows in the circuit in order to create the current in the circuit? Tick one box.

| char  | je               |  |
|-------|------------------|--|
| poter | ntial difference |  |
| powe  | r                |  |
| resis | tance            |  |
|       |                  |  |

(ii) In which unit do we measure current? ......[2]

(a) (i) variable resistor B1

(ii) adjust/change/vary/control the current/voltage, ignore vary resistance B1

- (b) (i) top box ticked: charge B1
- (ii) A or amp(s) or ampere(s), condone a, ignore I, NOT ammeter B1

### Fig. 5.1 shows two circuits, A and B.





Both circuits contain a 6V power supply and two 6V lamps.

(a) State two advantages of circuit B compared to circuit A.

..... ..... ..... ......[2]

5

any two from: lamps all have 6V or full voltage (across them) OR lamps are brighter if one (lamp) breaks, little/ no effect on other lamps can be switched on and off independently B2