NUMBERS-SET-2-QP-MS

1
(a) Karl invests $\$ 200$ at a rate of 1.5% per year simple interest.

Calculate the value of Karl's investment at the end of 8 years.
(b) Lena invests $\$ 200$ at a rate of 1.4% per year compound interest.

Calculate the value of Lena's investment at the end of 8 years.
\$
(c) The rates of interest remain the same as in part (a) and part (b).

Find how many more complete years it will take for the value of Lena's investment to be greater than the value of Karl's investment.

MARKSCHEME:

(a)	224	3	M2 for $200+\frac{200 \times 1.5 \times 8}{100}$ oe or M1 for $\frac{200 \times 1.5 \times 8}{100}$ oe implied by 24
(b)	223.53	3	M2 for $200 \times\left(1+\frac{1.4}{100}\right)^{8}$ oe M1 for $200 \times\left(1+\frac{1.4}{100}\right)^{k}$ oe k integer > 1 If 0 scored, $\mathbf{S C 1}$ for 23.5 or 23.52 to 23.53
(c)	3 nfww cao	2	M1 for trials with 1.5% and 1.4% bcyond their 224 and their 223.53 respectively, implied by 11 , or appropriate equation or graph sketch implied by $10.79 \ldots, 2.79 \ldots$

(a) Sergio invests $\$ 2000$ at a rate of 3% per year compound interest.
(i) Find the value of his investment at the end of 5 years.
\$
[3]
(ii) After how many complete years is the value of his investment greater than $\$ 4000$?
(b) Anna invests $\$ 2000$ at a rate of 0.24% per month compound interest.

Find the value of her investment at the end of 5 years.
(c) Calculate the monthly compound interest rate that is equal to a compound interest rate of 3% per year.

MARKSCHEME:

(a)(i)	2318.55	3	M2 for $2000 \times\left(1+\frac{3}{100}\right)^{5}$ or M1 for $2000 \times\left(1+\frac{3}{100}\right)^{k}, \quad k>1$ If 0 scored, $\mathbf{S C} 1$ for 318.5 ... or 319 or 320
(a)(ii)	24	3	B2 for 23.4 or 23.44 to 23.45 or M2 for $n=\frac{\log \left(\frac{4000}{2000}\right)}{\log 1.03}$ oe or M1 for $2000 \times 1.03^{n}=4000$ oe
(b)	2309.37	3	M2 for $2000 \times\left(1+\frac{0.24}{100}\right)^{60}$ or M1 for $2000 \times\left(1+\frac{0.24}{100}\right)^{k}, k>1$
(c)	0.247 or 0.2466...	3	M2 for $\sqrt[12]{1+\frac{3}{100}}$ implied by $1.00246[6 .$. or M1 for $x^{12}=1+\frac{3}{100}$ oe

(a) Louis invests $\$ 500$ at a rate of 2.5% per year simple interest.

Calculate the total amount of interest at the end of 8 years.
\$
[2]
(b) Martha invests $\$ 500$ at a rate of 2.4% per year compound interest.

Calculate the total amount of interest at the end of 8 years.
\$
(c) Naomi invests an amount of money at a rate of 2.1% per year compound interest.

Find the number of complete years it takes for the value of Naomi's investment to double.
(d) Oscar invests an amount of money at a rate of $r \%$ per year compound interest.

At the end of 31 years the value of Oscar's investment is 2.5 times greater than the original amount of money.

Find the value of r.
$r=$
[3]

MARKSCHEME:

(a)	100	2	M1 for $\frac{500 \times 2.5 \times 8}{100}$ oe
(b)	104 or 104.4 to 104.5	4	B3 for 604 or 604.4 to 604.5 or M2 for $500 \times\left(1+\frac{2.4}{100}\right)^{8}$ oe or M1 for $500 \times\left(1+\frac{2.4}{100}\right)^{n}$ with $n>1$
(c)	34	4	M3 for $[n=] \frac{\log 2}{\log (1.021)}$ oe or at least two trials with $n>30$ or graph leading to solution oe (implied by 33.4 or 33.35...) or M2 for $1.021^{n}=2$ oe or suitable graph e.g. $y=1.021^{x}$ or 3 correct trials or $\mathbf{B 1}$ for 1.021^{n} oe seen
(d)	$3[.00]$ or 2.999...	3	M2 for $\sqrt[31]{2.5}$ oe or sketch of graph leading to answer or M1 for $(\ldots)^{31}=2.5$ oe or sketch of a relevant graph

Herman bought a motorbike on 1 January 2014.
By 1 January 2015 the value of the motorbike had reduced by 16%.
4
By 1 January 2016 the value of the motorbike had reduced by 12% of the value on 1 January 2015. The value of the motorbike on 1 January 2016 was $\$ 7392$.
(a) Find how much Herman paid for the motorbike.
(b) From 2016, the value of the motorbike reduced by 8% each year.

Calculate the number of complete years it will take for the value of the motorbike to decrease from $\$ 7392$ to $\$ 5000$.

MARKSCHEME:

(a)	10000	3	$\begin{aligned} & \text { M2 for } \frac{7392}{(1-0.16)(1-0.12)} \text { oe } \\ & \text { or } \mathbf{M 1} \text { for } \div(1-0.16) \text { or } \div(1-0.12) \\ & \text { oe } \\ & \text { or } \mathbf{M} 1 \text { for } 88 \% \text { is 'equivalent' to } 7392 \end{aligned}$
(b)	5	4	M3 for $[k=] \frac{\log \frac{5000}{7392}}{\log 0.92}$ oe or correct trials as far as 4 and 5 or M2 for $0.92^{k}=\frac{5000}{7392}$ oe or at least 3 correct trials or M1 for $7392 \times 0.92^{k}=5000$ oe

(a) Riaz invests $\$ 5000$ at a rate of 2.5% per year simple interest.
(i) Calculate the value of the investment at the end of 4 years.
\$
(ii) Calculate the number of complete years it will take for the value of the investment to be $\$ 6500$.
(b) Yasmin invests $\$ 5000$ at a rate of 2% per year compound interest.
(i) Calculate the value of Yasmin's investment at the end of 4 years.
\$
(ii) Calculate the number of complete years it will take for the value of Yasmin's investment to first be worth more than $\$ 6500$.

MARKSCHEME:

(a)(i)	5500	3	M2 for $5000+\frac{5000 \times 2.5 \times 4}{100}$ oe or M1 for $\frac{5000 \times 2.5 \times 4}{100}$ oe
(a)(i)	12	2	M1 for $\frac{5000 \times 2.5 \times n}{100}=6500-5000$ oe
(b)(i)	5412.16	3	M2 for $5000 \times\left(1+\frac{2}{100}\right)^{4}$ or M1 for $5000 \times\left(1+\frac{2}{100}\right)^{n}, n>1$
(b)(ii)	14	4	M3 for $[n=] \frac{\log \left(\frac{6500}{5000}\right)}{\log 2}$ soi by 13.2 or 13.24 to 13.25 or answer 13 or correct trials as far as 13 and 14 or M2 for $1.02^{n}=\left(\frac{6500}{5000}\right)$ or at least 3 correct trials or suitable graph or $\mathbf{M 1}$ for $5000 \times 1.02^{n}=6500$ soi.

The number of fish in a lake decreases by 4% each year.
In January 2018 there are 30000 fish in the lake.
(a) Calculate the number of fish in the lake in
(i) January 2019,
(ii) January 2029,
(iii) January 2017.
(b) Find the last year in which there were at least 50000 fish in the lake.
(c) Philip runs a fishing business and he works 50 weeks every year. In 2018, he catches 800 kg of fish in each of these weeks.
He sells all the fish he catches at a price of $\$ 3.50$ for each kilogram.
(i) Calculate the total amount he receives in 2018.
\$
(ii) For each of the 50 weeks, Philip's business costs $\$ 2240$ to run.

Calculate his profit as a percentage of $\$ 2240$.
\qquad
(d) In 2019, Philip's business costs 8% more to run than in 2018.

The selling price of fish decreases by 10%.
Find the amount of fish, in kilograms, Philip will need to catch each week to keep the percentage profit found in part (c)(ii) the same.

MARKSCHEME:

(a)(i)	28800	$\mathbf{2}$	M1 for $30000 \times \frac{100-4}{100}$ oe

5(a)(ii)	19147 or 19100 nfww	3	$\begin{aligned} & \text { FT their } 0.96 \text {, must be }<1 \text { and not } 0.04 \\ & \text { M2 for } 30000 \times(\text { their } 0.96)^{11} \\ & \text { or } 28800 \times(\text { their } 0.96)^{10} \\ & \text { or M1 for } 30000 \times(\text { their } 0.96)^{k}, k>1 \text { oe } \end{aligned}$
5(a)(iii)	31250	3	M2 for $30000 \div \operatorname{their}(0.96)$ or $\mathbf{M 1}$ for $30000=$ their $0.96[x]$
5(b)	2005 nfww	4	M3 for $n \log ($ their 0.96$)=\log \frac{30000}{50000}$ oe or M2 for $(\text { their } 0.96)^{n}=0.6$ oe or M1 for $50000 \times(0.96)^{n}=30000$ oe OR M3 for T and I with ' 12 and13' seen or M2 for at least 3 correct trials or M1 for $50000 \times(0.96)^{n}=30000$ oe
5(c)(i)	140000	3	M2 for $800 \times 50 \times 3.5$ or M1 for multiplying any two
5(c)(ii)	25	3	$\begin{aligned} & \text { M2 for } \frac{\text { their }(\mathbf{i})-2240 \times 50}{2240 \times 50}[\times 100] \text { oe } \\ & \\ & \text { or } \frac{\text { their }(\mathbf{i})}{2240 \times 50} \times 100 \text { oe } \\ & \text { or } \frac{800 \times 3.5-2240}{2240}[\times 100] \text { oe } \\ & \text { or } \frac{800 \times 3.5}{2240} \times 100 \\ & \text { or M1 for their }(\mathbf{i})-2240 \times 50 \\ & \text { or } \frac{\text { their }(\mathbf{i})}{2240 \times 50} \\ & \text { or } 800 \times 3.5-2240 \\ & \text { or } \frac{800 \times 3.5}{2240} \end{aligned}$
5(d)	960	4	$\begin{aligned} & \text { M3 for } \frac{2240 \times 1.08 \times 1.25}{3.5 \times 0.9} \text { oe } \\ & \qquad \begin{array}{l} \text { or for } \frac{x \times 3.5 \times 0.9-2240 \times 1.08}{2240 \times 1.08} \\ =\frac{\text { their }(\mathbf{c})(\mathbf{i i})}{100} \text { oe } \\ \text { or B1 for } 3.15 \text { or } 157.50 \\ \text { and B1 for } 2419.2 \text { or } 120960 \text { or } 3024 \end{array} \end{aligned}$

Adila has $\$ 10000$.

7
(a) She uses some of the money to buy a car. The salesman reduces the price from $\$ 3800$ to $\$ 3610$.

Calculate the percentage reduction.
(b) Adila invests the remaining $\$ 6390$ at a rate of 3% per year compound interest.
(i) Find the value of the investment at the end of 5 years.
\$
(ii) Find the least number of complete years after which the value of the investment is more than $\$ 9000$.

MARKSCHEME:

(a)	5\%	3	$\begin{aligned} & \text { M2 for } \frac{3800-3610}{3800}[\times 100] \text { oe } \\ & \text { or } \frac{3610}{3800} \times 100 \\ & \text { or M1 for } \frac{3610}{3800} \text { oe } \end{aligned}$
(b)(i)	7410 or 7407 to 7408	3	M2 for $6390 \times\left(1+\frac{3}{100}\right)^{5}$ oe or M1 for $6390 \times\left(1+\frac{3}{100}\right)^{k}$ oe, $k>1$
(ii)	12 nfww	4	M3 for $n \log 1.03=\log \left(\frac{9000}{6390}\right)$ soi by 11.6 or $11.58 \ldots$ oe or correct trials as far as 11 and 12 oe or M2 for $1.03^{n}=\frac{9000}{6390}$ or at least 3 correct trials with $n \geqslant 5$ or M1 for $6390 \times 1.03^{n}=9000$ soi.

