NUMBERS-SET-2-QP-MS

	(a) Karl invests \$200 at a rate of 1.5% per year simple inte	rest.
ı	Calculate the value of Karl's investment at the end of 8 years.	
		\$[3]
<i>a</i> .		
(b)	Lena invests \$200 at a rate of 1.4% per year compound interest	st.
	Calculate the value of Lena's investment at the end of 8 years.	
		\$[3]
(c)	The rates of interest remain the same as in part (a) and part (b).
()	Find how many more complete years it will take for the value	
	the value of Karl's investment.	of Lena's investment to be greater than
		[2]

		4	
(a)	224	3	M2 for $200 + \frac{200 \times 1.5 \times 8}{100}$ oe or M1 for $\frac{200 \times 1.5 \times 8}{100}$ oe implied by 24
(b)	223.53	3	M2 for $200 \times \left(1 + \frac{1.4}{100}\right)^8$ oe M1 for $200 \times \left(1 + \frac{1.4}{100}\right)^k$ oe k integer > 1 If 0 scored, SC1 for 23.5 or 23.52 to 23.53
(c)	3 nfww cao	2	M1 for trials with 1.5% and 1.4% beyond their 224 and their 223.53 respectively, implied by 11, or appropriate equation or graph sketch implied by 10.79, 2.79

(a) Sergio invests \$2000 at a rate of 3% per year compound interest. Find the value of his investment at the end of 5 years. After how many complete years is the value of his investment greater than \$4000? **(b)** Anna invests \$2000 at a rate of 0.24% per **month** compound interest. Find the value of her investment at the end of 5 years. (c) Calculate the **monthly** compound interest rate that is equal to a compound interest rate of 3% per year.

 %	[3]

(a)(i)	2318.55	3	M2 for $2000 \times \left(1 + \frac{3}{100}\right)^5$ or M1 for $2000 \times \left(1 + \frac{3}{100}\right)^k$, $k > 1$ If 0 scored, SC1 for 318.5 or 319 or 320
(a)(ii)	24	3	B2 for 23.4 or 23.44 to 23.45 or M2 for $n = \frac{\log\left(\frac{4000}{2000}\right)}{\log 1.03}$ oe or M1 for $2000 \times 1.03^n = 4000$ oe
(b)	2309.37	3	M2 for $2000 \times \left(1 + \frac{0.24}{100}\right)^{60}$ or M1 for $2000 \times \left(1 + \frac{0.24}{100}\right)^k$, $k > 1$
(c)	0.247 or 0.2466	3	M2 for $\sqrt[12]{1 + \frac{3}{100}}$ implied by 1.00246[6] or M1 for $x^{12} = 1 + \frac{3}{100}$ oe

	•
4	•
_	J

(a) Louis invests \$500 at a rate of 2.5% per year simple interest.

Calculate the total amount of interest at the end of 8 years.

	\$	[2]
(b)	Martha invests \$500 at a rate of 2.4% per year compound interest.	
	Calculate the total amount of interest at the end of 8 years.	
	\$	[4]
(c)	Naomi invests an amount of money at a rate of 2.1% per year compound interest.	
	Find the number of complete years it takes for the value of Naomi's investment to double.	

.....[4

(d)	Oscar invests an amount of money at a rate of $r\%$ per year compound interest. At the end of 31 years the value of Oscar's investment is 2.5 times greater than the original amount of money.
	Find the value of r .
	$r = \dots $ [3]

L.			
(a)	100	2	M1 for $\frac{500 \times 2.5 \times 8}{100}$ oe
(b)	104 or 104.4 to 104.5	4	B3 for 604 or 604.4 to 604.5 or M2 for 500 × $\left(1 + \frac{2.4}{100}\right)^8$ oe or M1 for 500 × $\left(1 + \frac{2.4}{100}\right)^n$ with $n > 1$ oe
(c)	34	4	M3 for $[n =]\frac{\log 2}{\log(1.021)}$ oe or at least two trials with $n > 30$ or graph leading to solution oe (implied by 33.4 or 33.35) or M2 for $1.021^n = 2$ oe or suitable graph e.g. $y = 1.021^x$ or 3 correct trials or B1 for 1.021^n oe seen
(d)	3[.00] or 2.999	3	M2 for $\sqrt[31]{2.5}$ oe or sketch of graph leading to answer or M1 for $()^{31} = 2.5$ oe or sketch of a relevant graph

4

Herman bought a motorbike on 1 January 2014.

By 1 January 2015 the value of the motorbike had reduced by 16%.

By 1 January 2016 the value of the motorbike had reduced by 12% of the value on 1 January 2015.

The value of the motorbike on 1 January 2016 was \$7392.

(a) Find how	much Herman	paid for	the	motorbike
٦		,		P 44-44	****	

\$	······	3
Ψ		٠.

(b) From 2016, the value of the motorbike reduced by 8% each year.

Calculate the number of complete years it will take for the value of the motorbike to decrease from \$7392 to \$5000.

.....[4]

. (a)	10 000	3	M2 for $\frac{7392}{(1-0.16)(1-0.12)}$ oe or M1 for ÷(1-0.16) or ÷(1-0.12) oe or M1 for 88% is 'equivalent' to 7392
(b)	5	4	M3 for $[k =] \frac{\log \frac{5000}{7392}}{\log 0.92}$ oe or correct trials as far as 4 and 5 or M2 for $0.92^k = \frac{5000}{7392}$ oe or at least 3 correct trials or M1 for $7392 \times 0.92^k = 5000$ oe

(i)	Calculate the value of the investment at the end of 4 years.
	\$
(ii)	Calculate the number of complete years it will take for the value of the investment to \$6500.
Yası	min invests \$5000 at a rate of 2% per year compound interest.
(i)	Calculate the value of Yasmin's investment at the end of 4 years.
	\$
(ii)	Calculate the number of complete years it will take for the value of Yasmin's investment first be worth more than \$6500.

IVIAINISCIIL	-1416.		
(a)(i)	5500	3	M2 for $5000 + \frac{5000 \times 2.5 \times 4}{100}$ oe or M1 for $\frac{5000 \times 2.5 \times 4}{100}$ oe
(a)(i)	12	2	M1 for $\frac{5000 \times 2.5 \times n}{100} = 6500 - 5000$ oe
(b)(i)	5412.16	3	M2 for $5000 \times \left(1 + \frac{2}{100}\right)^4$ or M1 for $5000 \times \left(1 + \frac{2}{100}\right)^n$, $n > 1$
(b)(ii)	14	4	M3 for $[n =]$ $\frac{\log\left(\frac{6500}{5000}\right)}{\log 2}$ soi by 13.2 or 13.24 to 13.25 or answer 13 or correct trials as far as 13 and 14 or M2 for $1.02^n = \left(\frac{6500}{5000}\right)$ or at least 3 correct trials or suitable graph or M1 for $5000 \times 1.02^n = 6500$ soi.

The number of fish in a lake decreases by 4% each year.

In January 2018 there are 30 000 fish in the lake.

- (a) Calculate the number of fish in the lake in
 - (i) January 2019,

[2]
 . 4

(ii) January 2029,

[2]																																															1	3	
-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--

(iii) January 2017.

		•			•							•	•	•					 	 				 			3	,	

(b) Find the last year in which there were at least 50 000 fish in the lake.

.....[4

(c)	In 2	ilip runs a fishing business and he works 50 weeks every 2018, he catches 800 kg of fish in each of these weeks. sells all the fish he catches at a price of \$3.50 for each k		
	(i)	Calculate the total amount he receives in 2018.		
			\$	[3]
	(ii)	For each of the 50 weeks, Philip's business costs \$224	0 to run.	
		Calculate his profit as a percentage of \$2240.		
(d)	In 2	2019, Philip's business costs 8% more to run than in 201		% [3]
(u)		e selling price of fish decreases by 10%.	0.	
		nd the amount of fish, in kilograms, Philip will need to caund in part (c)(ii) the same.	tch each week to	keep the percentage profit
				kg [4]

MARKSC			
(a)(i)	28 800	2	M1 for $30000 \times \frac{100 - 4}{100}$ oe
5(a)(ii)	19 147 or 19 100 nfww	3	FT their 0.96, must be <1 and not 0.04 M2 for $30000 \times (their 0.96)^{11}$ or $28800 \times (their 0.96)^{10}$ or M1 for $30000 \times (their 0.96)^k$, $k > 1$ oe
5(a)(iii)	31 250	3	M2 for $30000 \div their(0.96)$ or M1 for $30000 = their(0.96)[x]$
5(b)	2005 nfww	4	M3 for $n\log(their 0.96) = \log \frac{30000}{50000}$ oe or M2 for $(their 0.96)^n = 0.6$ oe or M1 for $50000 \times (0.96)^n = 30000$ oe OR M3 for T and I with '12 and 13' seen or M2 for at least 3 correct trials or M1 for $50000 \times (0.96)^n = 30000$ oe
5(c)(i)	140 000	3	M2 for $800 \times 50 \times 3.5$ or M1 for multiplying any two
5(c)(ii)	25	3	M2 for $\frac{their(\mathbf{i}) - 2240 \times 50}{2240 \times 50} [\times 100] \text{ oe}$ or $\frac{their(\mathbf{i})}{2240 \times 50} \times 100 \text{ oe}$ or $\frac{800 \times 3.5 - 2240}{2240} [\times 100] \text{ oe}$ or $\frac{800 \times 3.5}{2240} \times 100$ or M1 for $their(\mathbf{i}) - 2240 \times 50$ or $\frac{their(\mathbf{i})}{2240 \times 50}$ or $800 \times 3.5 - 2240$ or $\frac{800 \times 3.5}{2240}$
5(d)	960	4	M3 for $\frac{2240 \times 1.08 \times 1.25}{3.5 \times 0.9}$ oe or for $\frac{x \times 3.5 \times 0.9 - 2240 \times 1.08}{2240 \times 1.08}$ $= \frac{their(\mathbf{c})(\mathbf{ii})}{100}$ oe or B1 for 3.15 or 157.50 and B1 for 2419.2 or 120 960 or 3024

Adila has \$10000.

(a) She uses some of the money to buy a car.
The salesman reduces the price from \$3800 to \$3610.

Calculate the percentage reduction.

	9	% [3
(b)	Adila invests the remaining \$6390 at a rate of 3% per year compound interest.	
	(i) Find the value of the investment at the end of 5 years.	

(ii) Find the least number of complete years after which the value of the investment is more than \$9000.

.....[4]

IVIAININGCI	ILIVIL.		
.(a)	5%	3	M2 for $\frac{3800 - 3610}{3800}$ [× 100] oe or $\frac{3610}{3800}$ ×100 or M1 for $\frac{3610}{3800}$ oe
(b)(i)	7410 or 7407 to 7408	3	M2 for $6390 \times (1 + \frac{3}{100})^5$ oe or M1 for $6390 \times (1 + \frac{3}{100})^k$ oe, $k > 1$
ı (ii)	12 nfww	4	M3 for $n \log 1.03 = \log \left(\frac{9000}{6390} \right)$ soi by 11.6 or 11.58 oe or correct trials as far as 11 and 12 oe or M2 for $1.03^n = \frac{9000}{6390}$ or at least 3 correct trials with $n \ge 5$ or M1 for $6390 \times 1.03^n = 9000$ soi.