EXPONENTLAL GROWTH-DECAY-POPULATIONFINANCE PROBLEM

One general formula that is always true for all kinds of exponential growth and decay problems is :
$A=P e^{r t}$,

- where " A " is the ending amount of whatever you're dealing with (money, bacteria growing in a petri dish, radioactive decay of an element highlighting your X-ray).
- " P " is the beginning amount of that same "whatever",
- "r" is the growth or decay rate, and
- "t" is time.

Note: The formula $\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}$, is related to the compound-interest formula, and represents the case of the interest being compounded "continuously".
Example:

- A certain type of bacteria, given a favourable growth medium, doubles in population every 8.5 hours. Given that there were approximately 500 bacteria to start with, how many bacteria will there be in a day and a half?
$A=P e^{k t}$
$1000=500 e^{8.5 k}$
$2=e^{8.5 k}$
This is the final equation.[Logs is not for the current IGCSE Syllabus]

IGCSE PAST PAPER QUESTIONS

1
(a) The price of a book increases from $\$ 2.50$ to $\$ 2.65$.

Calculate the percentage increase.
(b) Scott invests $\$ 500$ for 7 years at a rate of 1.5% per year simple interest.

Calculate the value of his investment at the end of the 7 years.
\$.
(c) In a city the population is increasing exponentially at a rate of 1.6% per year.

Find the overall percentage increase at the end of 20 years.
\qquad
(d) The population of a village is 6400 .

The population is decreasing exponentially at a rate of $r \%$ per year.
After 22 years, the population will be 2607 .

Find the value of r.

MARKING SCHEME:

(a)	6 nfww	$\mathbf{3}$	M2 for $\frac{2.65-2.50}{2.50}[\times 100]$ or for $\frac{2.65}{2.50} \times 100$ or $\mathbf{M 1}$ for $\frac{2.65}{2.50}$
(b)	$552.5[0]$	$\mathbf{3}$	B2 for $52.5[0]$ or M2 for $500 \times \frac{1.5}{100} \times 7+500$ oe
(c)	37.4 or $37.36 \ldots$	$\mathbf{2}$	M1 for $\left(1+\frac{1.6}{100}\right)^{20}$ oe soi $1.37 \ldots$
(d)	$4[.00 \ldots]$	or M1 for $500 \times \frac{1.5}{100}[\times 7]$ oe	

