DENSITY-MASS-VOLUME-WEIGHT

The list below gives the approximate densities of various metals.

gold 19 g/cm³

1

lead 11 g/cm³

copper 9g/cm³

iron 8g/cm³

At an antiques market, a collector buys what is advertised as a small ancient gold statue. When the collector tests it in the laboratory, he finds its mass is 600 g and its volume is $65\,\mathrm{cm}^3$.

(a) In the space below, describe how the volume of the statue could be measured. You may draw diagrams if you wish.

[3]

(b) Use the figures given above to decide whether the statue was really made of gold. Show your working.

Was the statue made of gold? (Tick one box.)

yes	
no	

[3]

[Total: 6]

Marking So	cheme
------------	-------

(a)	measuring cylinder with liquid immerse statue volume from difference of readings from measuring cylinder OR	B1 B1 B1
	displacement can or equivalent or beaker filled to overflowing with liquid immerse statue measure volume displaced with measuring cylinder	(B1) (B1) (B1)
(b)	(D =) M/V OR 600/65 9.23 g/cm ³ (minimum 2 s.f.) N.B. unit penalty applies	B1 B1
	OR (For gold) (M =) V × D OR 65 × 19 1235 g (minimum 2 s.f.) N.B. unit penalty applies OR	(B1) (B1)
	(For gold) (V =) M / D OR 600/19 31.6 cm ³ (minimum 2 s.f.) N.B. unit penalty applies	(B1) (B1)
	'NO' ticked if justified by previous work in (a) or (b). e.c.f from wrong values above	B 1

[6]

the	us	e of a small brass object of mass 200 g.
(a)	С	alculate the volume of the brass object. The density of brass is 8.4 g/cm ³ .
		volume =[2]
(b)	W	o find the volume of the piece of wood, the student has a measuring cylinder, a supply of ater and the brass object in (a) . The piece of wood and the brass object are small enough to e placed in the measuring cylinder.
	(i	The piece of wood does not sink in water.
		Suggest why.
		[1]
	(ii)	Describe what the student does to find the volume of the piece of wood, stating the measurements that she makes and any calculations required.
		[4]
		[Total: 7]

A student wishes to find the volume of a piece of wood of irregular shape. Her experiment requires

Marking Scheme	
(a) d = m/V in any form OR (V =) m/d OR 200/8.4 24 cm ³	C1 A1
(b) (i) density less (than water) OR upthrust ≥ weight	B1
(ii) determine any volume of any liquid (V ₁) states viable method to submerge wood reads volume (V ₂) from previous line and determines volume	B1 B1
of (wood + brass) ($V_2 - V_1$) subtract volume of brass from above (to give volume of wood)	B1 B1
	[Total: 7]

A student is given the following apparatus in order to find the density of a piece of rock.

3

100 g mass metre rule suitable pivot on which the rule will balance measuring cylinder that is big enough for the piece of rock to fit inside cotton water

The rock has a mass of approximately 90 g.

(a)	(i)	In the space below, draw a labelled diagram of apparatus from this list set up so
		that the student is able to find the mass of the piece of rock.

	(ii)	State the readings the student should take and how these would be used to find the mass of the rock.
		[5
(b)	Des	scribe how the volume of the rock could be found.
		[2
(c)		mass of the rock is 88 g and its volume is 24 cm ³ . culate the density of the rock.
		density of rock =[2

	Marking Scheme			
a(i) outline, ruler pivoted (at centre), mass one side, rock other side		C1	
•	quality set-up, each mass at(marked)point + labels	2	A1	
(i	i) rod must be balanced before readings can be taken or record mass as 1			
·	distances to pivot from rock and mass BI chilance pivot to mass BI		B 7	
	mass or 100 x distance to pivot = mass of rock x distance rock to pivot	3	<u>B1</u>	. 5
b	put water in cylinder, read value		В1	
	insert rock until covered, read value		В1	
	difference in values is volume of rock	2.	B1	M2 -
С	density = mass/volume or 88/24	1;	C1	
	density = mass/volume or 88/24 = 3.7 g/cm ³ * (accept 3 ⁷ / ₃ g/cm ³)	2	A1	2

(a)	Defi	ne <i>density</i> .		
				[1]
(b)		e density of aluminium is 2 minium foil varies, but is much	.70 g/cm ³ . The thickness of a less than 1 mm.	a rectangular sheet of
	A st	udent wishes to find the avera	age thickness. She obtains the fo	ollowing measurements.
		mass of sheet = 60.7 g length of sheet = 50.0 cm width of sheet = 30.0 cm		
	Cal	culate the student's values for	•	
	(i)	the volume of the sheet,		
			volume =	[2]
	(ii)	the average thickness of the	sheet.	
			thickness =	[2]
(c)	thic		means of cutting the sheet, de ing instrument. Assume the su	
	(i)	Name a measuring instrume	ent she could use.	

(ii)	Describe the procedure she should follow to obtain an accurate value of the average thickness of the sheet.
	Details of how to read the instrument are not required.
	[3]

MARKING SCHEME:

(a)	•	nsity =) mass/volume OR mass per unit volume m/V with symbols explained	B1
(b)	(i)	(vol =) mass/density OR 60.7/2.70 = 22.48 cm³ to 2 or more sig. figs	C1 A1
	(ii)	$V = A \times \text{(average)}$ thickness OR thickness = V/A OR 22.48 / (50 × 30) 0.01499 cm to 2 or more sig. figs. e.c.f. (b)(i)	C1 A1
(c)	(i)	micrometer/screw gauge / (vernier/digital) callipers	B1
	(ii)	check zero of device used / cut sheet into several pieces / detail of how to use device / fold sheet	B1
		measure thickness of sheet <u>in different places</u> OR measure thickness of several pieces together calculate/obtain average thickness OR divide answer by number of measurement pieces/places	B1 ts/ B1
		Г	Total 9]

	udent has a large number of coins of different diameters, all made of the same metal. She hes to find the density of the metal by a method involving placing the coins in water.
(a)	State the formula needed to calculate the density.
	[1]
(b)	Describe how the measurements of the required quantities are carried out.
	[5]
(c)	State one precaution taken when carrying out the measurements in (b) to ensure that the result is as accurate as possible.
	[1]
	[Total: 7]

MARKING SCHEME;

a)	(density =) mass/volume	В1
b)	water used in measuring/graduated cylinder	B1
	volume of water known or read/recorded/taken	B1
	place the coins in the water and read/record/take new level of water in cylinder	B1
	subtract readings	B1
	OR ALTERNATIVE METHOD: pour water into displacement can to level of spout	(B1)
	place the coins/several coins in the water	(B1)
	collect overflow	(B1)
	measure volume of overflow water using measuring graduated cylinder	(B1)
	measure mass/weigh the coins used with balance/spring balance	B1

(c) one from:

read measuring cylinder levels at bottom of meniscus
repeat volume measurement and find average
place eye level with surface in measuring cylinder (to avoid parallax error)
place coins one at a time to avoid air bubbles between coins
avoid splashing when adding coins to water
make sure coins are dry/clean
use narrow/small measuring cylinder
place containers on horizontal surface
check zero of balance/spring balance/scales
displacement can method: make sure dripping finishes before and after adding coins

[Total: 7]

B1

The list below gives the approximate densities of various metals.

gold 19g/cm³

6

lead 11 g/cm³

copper 9g/cm³

iron 8 g/cm³

At an antiques market, a collector buys what is advertised as a small ancient gold statue. When the collector tests it in the laboratory, he finds its mass is 600 g and its volume is $65\,\mathrm{cm}^3$.

(a) In the space below, describe how the volume of the statue could be measured. You may draw diagrams if you wish.

[3]

(b) Use the figures given above to decide whether the statue was really made of gold. Show your working.

Was the statue made of gold? (Tick one box.)

yes	
no	

[3]

[Total: 6]

MARKING SCHEME:

(a)	measuring cylinder with liquid immerse statue volume from difference of readings from measuring cylinder OR	B1 B1 B1	
	displacement can/equivalent/beaker, <u>filled to overflowing</u> with liquid immerse statue measure volume displaced <u>with measuring cylinder</u>	(B1) (B1) (B1)	
(b)	(D =) M/V OR 600/65 9.23 g/cm ³ (minimum 2 s.f.) N.B. unit penalty applies OR	B1 B1	
	(For gold) (M =) V × D OR 65 × 19 1235 g (minimum 2 s.f.) N.B. unit penalty applies OR	(B1) (B1)	
	(For gold) (V =) M / D OR 600/19 31.6 cm ³ (minimum 2 s.f.) N.B. unit penalty applies	(B1) (B1)	
	'NO' ticked if justified by previous work in (a) or (b) . e.c.f from wrong values above	B1	[6]

(a)	Calculate the astronaut's weight on Earth.
	weight on Earth =[2]
(b)	Complete the following sentence.
	The astronaut's weight on Earth is the force
	between the astronaut and[1]
(c)	The astronaut undertakes a Moon landing. On the Moon the gravitational field strength is $1.6N/kg$.
	(i) State the astronaut's mass on the Moon.
	mass =
	(ii) Calculate the weight of the astronaut on the Moon.
	weight on Moon =
	[2]
	[Total: 5]

An astronaut has a mass of 65 kg on Earth, where the gravitational field strength is 10 N/kg.

MARKING SCHEME:

(a)	mg in any form 650 N	C1 A1	
(b)	gravitational / attractive and the Earth	B1	
(c)	(i) 65 kg	B1	
	(ii) 104 OR 100 N ecf (i)	B1	[5