SUBJECT: PHYSICS TOPIC: WORK / ENERGY /POWER SET-11-QP-MS

1	Water is held behind a dam in a hydroelectric power scheme.	
	State one other renewable source of energy.	
		[1]

biofuel / wind / geothermal / tidal / solar / wave	B1	

2	Radiation from the Sun is the main source of energy for most of our energy resources.
	State two energy resources that are not due to radiation from the Sun.
	[2]

 1		II.
any two from: • geothermal		B2
nucleartidal		

3 State two energy resources for which the Sun is not the	ie main source.
tall	[2]

?(b)	any two from:	S.	B2
	any two from: • geothermal	0,0	
	 nuclear 		
	 tidal 		

4	A cup of water contains 250 cm ³ of water at a temperature of 0 °C. An identical cup contains 250 cm ³ of a mixture of ice and water at a temperature of 0 °C.
	The temperature of the surrounding air is 20 °C.
	State and explain which cup contains the liquid with the lower temperature after 10 minutes.
	statement
	explanation

cup containing mixture of ice and water	M1
mixture of ice and water will remain at 0 °C until all ice is melted (but temperature of water at 0 °C rises) or reverse argument OR energy needed for change of state so temperature doesn't rise until this has taken place	A1

The load is pulled down a small distance below its equilibrium position to position A, as shown in Fig. 1.3. The load then moves up and down between position A and position B in Fig. 1.3.

Fig. 1.3

Describe the energy transfers which occur as the load moves:	
from position A to the equilibrium position	
from the equilibrium position to position B.	

from elastic / strain energy to gravitational potential energy EITHER:	В3
to kinetic energy, when moving from A to equilibrium OR from kinetic energy, when moving from equilibrium to B	