SMART EXAM RESOURCES 9702 PHYSICS TOPIC QUESTIONS

TOPIC: PHYSICAL QUANTITIES AND UNITS

SUB-TOPIC: SI UNITS

SUB-SUB-TOPIC: CONVERT BETWEEN UNITS

SET-2-QP-MS

(i) A wire of cross-sectional area 1.5 $\,$ mm 2 and length 2.5 m has a resistance of 0.030 $\Omega.$ Calculate the resistivity of the material of the wire in n Ω m.

resistivity =n Ω m [3]

Mark Scheme:

3	
$ \rho = (RA/1) $	C1
= (0.03 × 1.5 × 10 ⁻⁶)/2.5 (= 1.8 × 10 ⁻⁸)	C1
= 18 nΩ m	A1

A beam PQ is clamped so that the beam is horizontal. A mass *M* of 500 g is hung from end Q and the beam bends slightly, as illustrated in Fig. 1.1.

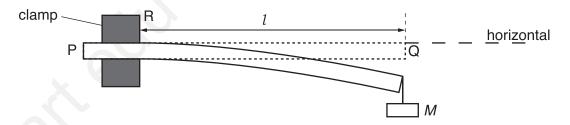


Fig. 1.1

The length l of the beam from the edge of the clamp R to end Q is 60.0 cm. The width b of the beam is 30.0 mm and the thickness d of the beam is 5.00 mm. The material of the beam has Young modulus E.

The mass M is made to oscillate vertically. The time period T of the oscillations is 0.58 s.

The period *T* is given by the expression

$$T = 2\pi \sqrt{\frac{4Ml^3}{Ebd^3}}.$$

(i) Determine E in GPa.

Mark Scheme:

$0.58 = 2\pi \times [(4 \times 0.500 \times 0.600^{3})/(E \times 0.0300 \times 0.00500^{3})]^{0.5}$	
$E = [4\pi^2 \times 4 \times 0.500 \times (0.600)^3] / [(0.58)^2 \times 0.0300 \times (0.00500)^3]$	C1
= 1.35 × 10 ¹⁰ (Pa)	
= 14 (13.5) GPa	A1

3	The distance from Earth to a star is 8.5×10^{16} m. Calculate the time for light to travel from the star to Earth in Gs.

time = Gs [2]

Mark Scheme:

$$t = (8.5 \times 10^{16})/(3.0 \times 10^{8})$$
 C1

$$(= 2.83 \times 10^8 =) 0.28(3) \,\text{Gs}$$
 A1 [2]

4	(a)	The spacing between two atoms in a crystal is 3.8×10^{-10} m. State this distance in pm.
		spacing = pm [1]
	(b)	Calculate the time of one day in Ms.
		time = Ms [1]
	(c)	The distance from the Earth to the Sun is 0.15 Tm. Calculate the time in minutes for light to travel from the Sun to the Earth.
		time = min [2]

(a) spacing =
$$380 \text{ or } 3.8 \times 10^2 \text{ pm}$$

(b) time =
$$24 \times 3600$$

time = $0.086 (0.0864)$ Ms

(c) time = distance / speed =
$$\frac{1.5 \times 10^{11}}{3 \times 10^8}$$

$$= 500 (s) = 8.3 min$$

5	The frequency of an X-ray wave is $4.6 \times 10^{20} \text{Hz}$.
	Calculate the wavelength in pm.

wavelength = pm [3]

MARKING SCHEME:

$$v = f\lambda$$
 C1
 $\lambda = (3.0 \times 10^8)/(4.6 \times 10^{20})$ C1
 $(= 6.52 \times 10^{-13} =) 0.65(2) \text{pm}$ A1 [3]