SMART EXAM RESOURCES9702 PHYSICS TOPIC QUESTIONS

TOPIC: PHYSICAL QUANTITIES AND UNITS SUB-TOPIC: SCALARS AND VECTORS SUB-SUB-TOPIC: VECTOR DIAGRAMS SET-2-QP-MS

An object O of mass 4.9 kg is suspended by a rope A that is fixed at point P. The object is pulled to one side and held in equilibrium by a second rope B, as shown in Fig. 2.1.

Fig. 2.1

Rope A is at an angle θ to the horizontal and rope B is horizontal. The tension in rope A is 69 N and the tension in rope B is T.

(i) On Fig. 2.1, draw arrows to represent the directions of all the forces acting on object O.[2]

$\boldsymbol{\gamma}$

(ii)	Cal	lси	late

1. the angle θ ,

$$\theta =$$
° [3]

2. the tension T.

(i)	arrow vertically down through O tension forces in correct direction on	rope	B1 B1	[2]
(ii)	1. weight = mg = 4.9 × 9.81 (= 48.07 69 sin θ = mg θ = 44.(1)° use of cos or tan 1/3 only) scale drawing allow ± 2°	C1 C1 A1	[3]
SINC	2. T = 69 cos θ = 49.6 / 50 N correct answers obtained using scale full marks cos in 1. then sin in 2. (2/2)	scale drawing 50 ±2 (2/2) diagram or triangle of force	 C1 A1	[2]

Three coplanar forces X, Y and Z act on an object, as shown in Fig. 3.1.

The force Z is vertical and X is horizontal. The force Y is at an angle θ to the horizontal. The force Z is kept constant at 70 N.

In an experiment, the magnitude of force X is varied. The magnitude and direction of force Y are adjusted so that the object remains in equilibrium.

Fig. 3.2 shows the variation of the magnitude of force Y with the magnitude of force X.

Fig. 3.2

a	(:)	Lieu Fig. 2.0 to potiments the magnifical of View V. 0
	(i)	Use Fig. 3.2 to estimate the magnitude of Y for $X = 0$. $Y = \dots $ N [1
	(ii)	State and explain the value of θ for $X = 0$.
		[2
	(iii)	The magnitude of X is increased to 160 N. Use resolution of forces to calculate the value of
		1. angle θ ,
		0.50
		$\theta = \dots ^{\circ} [2$ 2. the magnitude of force Y .
		Y= N [2
b	The a $\theta =$	ngle $ heta$ decreases as $\!$

A1 [1]

M1

(ii)
$$\theta = 90^{\circ}$$

(for equilibrium) the direction of Y must be opposite to Z

or using Y sin
$$\theta$$
 = Z, hence sin θ = 70 / 70 = 1, θ = 90° A1 [2]

(iii) 1.
$$Y \cos \theta = 160$$
 and $Y \sin \theta = 70$

$$\tan \theta = 70/160 \text{ hence } \theta = 23.6^{\circ} (24^{\circ})$$
 A1 [2]

or:

$$160^2 + 70^2 = Y^2$$
 (C1)
Y = 174.6 or 175 or 170 N (A1)

(c) (equilibrium not possible as) there is no vertical component from Y to balance Z B1 [1]

A boat is travelling in a flowing river. Fig. 1.1 shows the velocity vectors for the boat and the river water.

Fig. 1.1

The velocity of the boat in still water is $14.0\,\mathrm{m\,s^{-1}}$ to the east. The velocity of the water is $8.0\,\mathrm{m\,s^{-1}}$ from 60° north of east.

(ii) Determine the magnitude of the resultant velocity of the boat.

magnitude of velocity = $m s^{-1}$ [2]

- (i) arrow in the direction 30° to 40° south of east B1 [1]
- (ii) triangle of velocities completed (i.e. correct scale diagram) or correct working given c1 e.g. $[14^2 + 8.0^2 2(14)(8.0) \cos 60^\circ]^{1/2}$ or $[(14 8.0 \cos 60^\circ)^2 + (8.0 \sin 60^\circ)^2]^{1/2}$
 - resultant velocity = 12(.2) (or 12.0 to 12.4 from scale diagram) m s⁻¹ A1 [2]

- (b) A girl runs 120 m due north in 15 s. She then runs 80 m due east in 12 s.
- 4 i)
 Sketch a vector diagram to show the path taken by the girl. Draw and label her resultant displacement R.

[1]

- (ii) Calculate, for the girl,
 - **1.** the average speed,

average speed =
$$ms^{-1}$$
 [1]

2. the magnitude of the average velocity *v* and its angle with respect to the direction of the initial path.

magnitude of
$$v = \dots m s^{-1}$$

- triangle with right angles between 120 m and 80 m, <u>arrows</u> in correct direction and result displacement from start to finish <u>arrow</u> in correct direction and labelled R
- B1 [1]

(ii) 1. average speed (= 200/27) = 7.4 ms⁻¹

A1 [1]

2. resultant displacement (= $[120^2 + 80^2]^{1/2}$) = 144 (m)

C1

average velocity (= 144/27) = 5.3(3) m s⁻¹

A1

direction (= tan-1 80/120) = 34° (33.7)

A1 [3]

5

A rod AB is hinged to a wall at A. The rod is held horizontally by means of a cord BD, attached to the rod at end B and to the wall at D, as shown in Fig. 2.1.

Fig. 2.1

The rod has weight W and the centre of gravity of the rod is at C. The rod is held in equilibrium by a force T in the cord and a force F produced at the hinge.

(c) The forces F and T make angles α and β respectively with the rod and AC = $\frac{2}{3}$ AB, as shown in Fig. 2.1.

Write down equations, in terms of F, W, T, α and β , to represent

(i)	the resolution of forces horizontally,	
		[1]
(ii)	the resolution of forces vertically,	
		[1]
(iii)	the taking of moments about A.	

(1)	$F\cos\alpha = I\cos\beta$	ВТ	[i]
(ii)	$W = F \sin \alpha + T \sin \beta$	B1	[1]

(iii)
$$2W = 3T\sin\beta$$
 B1 [1]