MOTION-SET-3-QP-MS

Fig. 3.1 shows two speed/time graphs for a car.

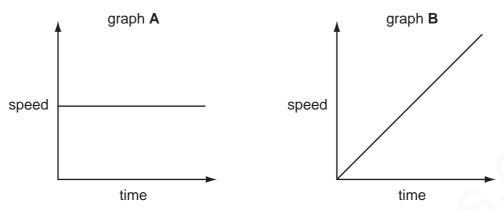


Fig. 3.1

(a)	Describe	the	motion	of the	car in

graph A ,	
graph B .	[1]

(b) The car travels at $20\,\text{m/s}$ for 90 seconds. The total force driving the car forward is $1000\,\text{N}$.

Calculate the work done by this force during this 90 second journey.

State the formulae that you use and show your working.

formulae used

working

[3

,	1116	e manufacturer of the car gave the following information.
	•	mass of car 950 kg
•	•	the car will accelerate from 0 to 33 m/s in 11 seconds
	(i)	Calculate the acceleration of the car during the 11 seconds.
		Show your working.
		[2]
(ii)	Calculate the force needed to produce this acceleration.
		State the formula that you use and show your working.
		formula used
		working
		[2]
(i	ii)	The manufacturer claims the car can reach a maximum speed of 170 km/hr.
		Explain, in terms of forces acting on the car, why there is a maximum speed (terminal velocity) that a car can reach.
		[2]

(a)		constant/steady, speed/velocity; - acceleration;	[1]
(b)	(wo	stance = 20 × 90 =) 1800 (m); ork done =) force × distance; 000 × 1800 = 1800 000 J;	[3]
(c)	(i)	(acceleration =) <u>change in</u> speed ÷ time = 33/11; = 3 m/s ² ;	[2]
	(ii)	(force =) mass × acceleration ; = 950 × 3 = 2850 N ;	[2]
	(iii)	the faster a car goes the greater the air resistance/frictional force; (eventually) air resistance balances (maximum) driving force;	[2]
		[То	otal: 10]

2 Fig. 5.1 shows a solar-powered vehicle.

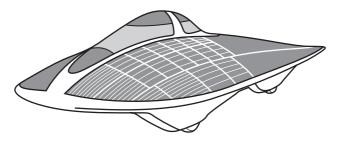


Fig. 5.1

(a) Fig. 5.2 shows a speed/time graph for the vehicle for the first hour of a journey.

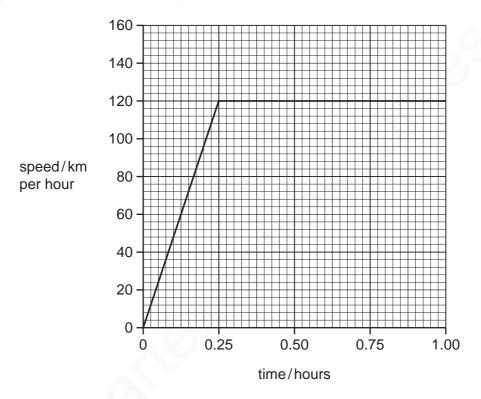


Fig. 5.2

(i) Calculate the distance travelled during the first hour.

Show your working and state the unit of your answer.

unit	[2]
 •	 1-1

(ii)	Calculate the acceleration of the vehicle during the first quarter of an hour.
	State your answer in m/s ² .
	Show your working.
	m/s^2 [3]

 $\bf 3$ Fig. 9.1 shows a solar-powered golf cart used to carry golfers around a golf course.

Fig. 9.1

(a) As the cart moves around the course, the motion of the cart is measured.

Fig. 9.2 shows a distance/time graph for a small part of the journey lasting 60 seconds.

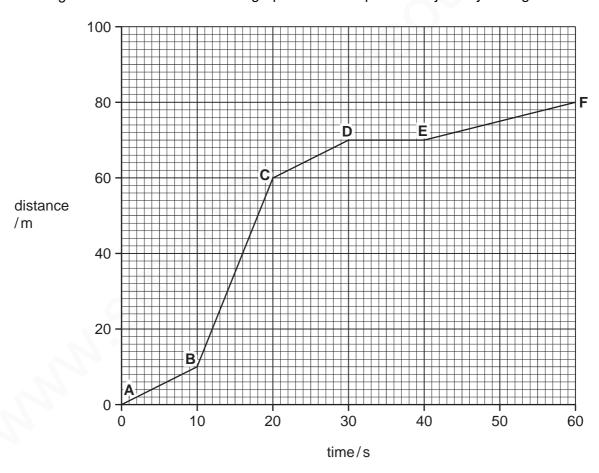


Fig. 9.2

(i) Show that the speed of the cart between B and C is 5 m/s.
Show your working in the space.

[1]

(a) (i) 50/10 (= 5 m/s); 20-10 (working could be on graph)

[1]

4 (a) A polar bear of mass 400 kg is swimming in the sea.

Fig. 4.1 shows the speed-time graph for the polar bear over a time interval of 300s.

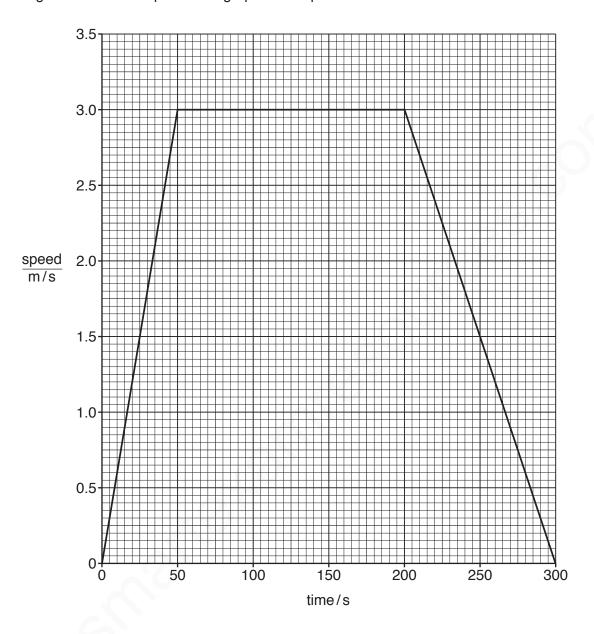


Fig. 4.1

(i) Calculate the distance travelled by the polar bear over the 300 s.

Show your working.

		(II) Calculate the acceleration of the polar be	ar at 25 seconds.
		Show your working.	
		Ç	
			m/s ² [2]
	(iii)	Calculate the maximum kinetic energy of the p	polar bear.
		State the formula you use and show your work	king.
		formula	
		working	
			kinetic energy = J [3]
<i>(</i> 1.)	т.		
(b)	The	ne polar bear has a weight of 4000 N.	
		ne polar bear stands with all four feet in contact warea of 0.035 m ² .	with the ice. Each foot of the polar bear has
	Cal	alculate the pressure exerted by the polar bear o	n the ice.
	Sta	ate the formula you use and show your working.	
	forn	rmula	
	1011	au	
	wor	orking	
		ı	pressure = N/m ² [2]

	•	I 35 000 Hz.
	(i)	Ultrasound waves have a very high frequency that cannot be heard by humans. Devices which emit ultrasound waves have been tested to see if they can keep polar bears away from people.
		Suggest a suitable frequency for the waves emitted by such a device.
		Hz [1]
	(ii)	A polar bear hears a sound.
		Fig. 4.2 represents the sound wave travelling through the air as a series of compressions (C) and rarefactions (R) .
	C	R C R C R C R C
		Fig. 4.2
		Describe two differences between a region of compression and a region of rarefaction.
		1
		2
		[2]
		[-1
(d)	Scie	entists use thermal imaging cameras to detect polar bears travelling on the ice.
		ermal imaging cameras use infra-red radiation. Infra-red radiation is part of the ctromagnetic spectrum.
		me one radiation in the electromagnetic spectrum that has a lower frequency than a-red radiation.
		[1]

(a)(i)	area under graph / working / 75 + 150 + 450 ; 675 (m) ;	,
(a)(ii)	working or 3/50; 0.06 (m/s²);	3
(a)(iii)	max speed = 3 m/s ; KE = $\frac{1}{2} \text{ mv}^2 / \frac{1}{2} \times 400 \times 9$; 1800(J);	;
(b)	pressure = force / area / 4000 / 4 × 0.035 ; 28 600 (N / m²) ;	-
(c)(i)	allow between 20 000 Hz and 35 000Hz ;	
(c)(ii)	compressions are regions where the particles in air are close together/rarefactions are regions where the particles in air are spread out; compressions are regions with air at higher pressure than normal/rarefactions are regions with air at lower pressure than normal;	2
(d)	radio waves or microwaves ;	

(a) A car travels along a road at 8 m/s.

	Describe the difference between the terms speed and velocity.	
	[1]
(b)	Some puddles of water have formed on the road.	
	Explain, in terms of water molecules, how the rate of evaporation of water from a puddle affected by the strength of the wind blowing across the puddle.	is
	[.	2]
(c)	The car battery has an electromotive force (e.m.f.) of 12 V.	
	State what is meant by electromotive force.	
		21

(d) Fig. 3.1 shows part of the lighting circuit for the car. Two lamps, $\bf L_1$ and $\bf L_2$, each have a resistance of 16 Ω .

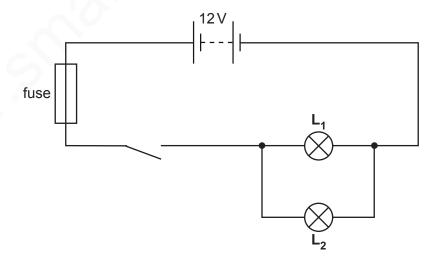


Fig. 3.1

	(i)	When the switch is closed the current in the fuse is 1.5A.
		Determine the current in L ₁ .
		current = A [1]
	(ii)	State one reason why the lamps are connected as shown in Fig. 3.1 and not in series.
		Explain your answer.
		[2]
(e)	Мо	dern cars use optical fibres to transfer information using visible light rays.
	Fig.	3.2 shows a ray of light entering an optical fibre.
		ray of light
		optical fibre
		Fig. 3.2
	(i)	Explain why the ray of light is able to stay inside the optical fibre. You may draw on Fig. 3.2 if it helps your answer.
		101
		[2]
	(ii)	Visible light rays are transverse waves.
		Draw labelled diagrams to show the difference between a transverse wave and a longitudinal wave.

[2]

[Total: 12]

111111	KIT G GETTEME		
(a)	speed has magnitude only / velocity has magnitude and direction / velocity has direction / speed does not have direction ;		1
(b)	increase in wind strength increases rate of evaporation / ORA ;		2
	(stronger wind) allows more molecules to escape / evaporate into the air above the puddle / ORA ;		
(c)	the energy / work done (supplied by a source); per (unit) charge;		2
(d)(i)	0.75 (A);		1
(d)(ii)	if one lamp fails the other will still work ; if one lamp fails still a complete circuit ;	2	
	OR		
	ref. to full brightness / brighter lamps ; because they each receive the full voltage ;		
(e)(i)	ref. to total internal reflection / owtte / shown on diagram ;	2	
	angle of incidence greater than the critical angle ;		
(e)(ii)	correct diagrams for transverse and longitudinal waves ;	2	1

vibrations perpendicular to direction of travel for transverse and parallel for longitudinal ;

(a)	A fle	ea is a small insect.
	A s	tudent uses a magnifying glass to observe a flea.
	The	e magnifying glass produces a virtual image.
	Des	scribe the difference between a real image and a virtual image.
(b)	(i)	The flea jumps upwards from rest. The speed of the flea increases to 1.2 m/s in 0.001 s.
		State the difference between the terms speed and velocity.
		[1]
	(ii)	Calculate the acceleration of the flea.
		acceleration = m/s ² [2]
	(iii)	The flea has a mass of 0.0005 g.
		Calculate the force causing this acceleration.
		force = N [3]
		[Total: 7]

(a)	a real image is formed where light rays, converge / are focussed; a virtual image is formed from where light rays appear to have diverged from; a real image can be formed on a screen; a virtual image cannot be formed on a screen; max 1	1
(b)(i)	speed has magnitude only / velocity has magnitude and direction / velocity has direction / speed does not have direction ;	1
(b)(ii)	$\frac{\text{change in speed}}{\text{time taken}} \text{ or } \frac{v-u}{t} \text{ or } \frac{\Delta v}{t} \text{ or } \frac{1.2}{0.001};$	2
	1200 (m/s ²);	
(b)(iii)	conversion of grams to kilograms; (force =) mass × acceleration or 0.0000005 × 1200 ; = 0.0006 (N);	3

7 Fig. 9.1 shows a snowboarder moving down a ski slope.

Fig. 9.1

(a) Fig. 9.2 shows a speed-time graph for the snowboarder.

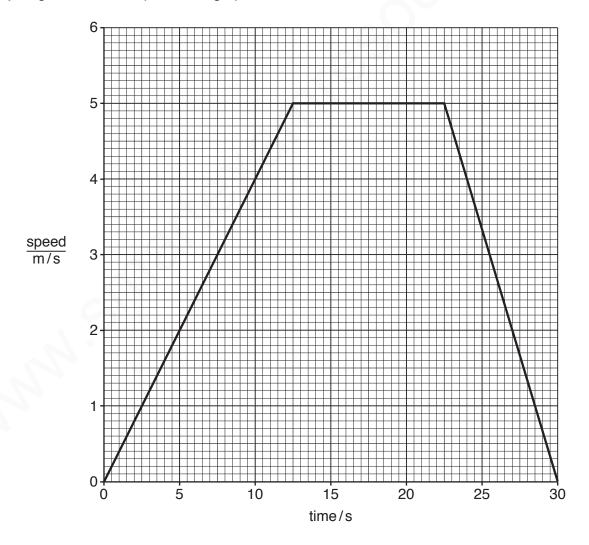


Fig. 9.2

The	e mass of the snowboarder is 75 kg.
(i)	Calculate the maximum kinetic energy of the snowboarder.
	State the formula you use and show your working.
	formula
	working
	kinetic energy =
(ii)	Calculate the acceleration of the snowboarder in the first 10 seconds.
(,	Show your working. State the unit of your answer.
	officw your working. State the unit of your answer.
	acceleration = unit
(iii)	Calculate the force required to produce the acceleration of the snowboarder you calculated in (a)(ii).
	State the formula you use and show your working.
	formula
	working
	force - N. [2]

(b) The snowboarder is exposed to infra-red and ultraviolet radiation from the Sun.

Infra-red and ultraviolet radiation are both parts of the electromagnetic spectrum.

(i) Place the radiations infra-red and ultraviolet in their correct positions in the incomplete electromagnetic spectrum in Fig. 9.3.

γ-rays	risible light radio wav	ves
--------	----------------------------	-----

Fig. 9.3

[1]

[2]

(ii) State the speed at which ultraviolet waves travel from the Sun to the Earth in km/s.

Give a reason for your answer.

speedkm/s

reason

(c) Some snow is steadily heated in a beaker.

The temperature of the snow is measured as it is heated.

Fig. 9.4 shows a graph of the results.

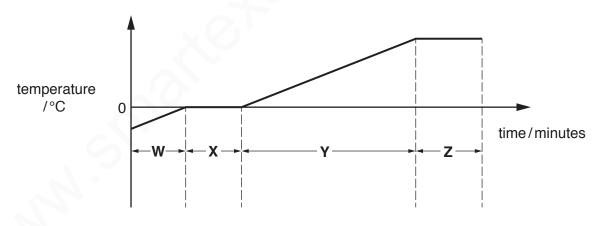


Fig. 9.4

Explain why the temperature of the snow does not increase in section **X**. Use the term *latent heat of fusion* in your answer.

(a)(i)	maximum speed = 5.0 m/s; $KE = \frac{1}{2} mv^2 OR \frac{1}{2} \times 75 \times 5 \times 5$; = 940 (J);	3
(a)(ii)	$\frac{\Delta V}{t}$ OR 4/10 OR 5/12.5 ; = 0.4 ; m/s ² ;	3
(a)(iii)	F = ma OR = 75 × 0.4; = 30 (N);	2
(b)(i)	ultraviolet written in correct box AND infra-red written in correct box ;	1
(b)(ii)	300 000 (km/s); because all electromagnetic waves travel at this speed;	2
(c)	latent heat of fusion required to <u>melt</u> snow; to break bonds (between molecules)/to overcome attractive forces (between molecules) / to increase potential energy of the molecules;	2