FUNCTIONS

2.5

A one-one function f is defined by $f(x) = (x - 1)^2 - 5$ for $x \ge k$.

For Examiner's Use

(i) State the least value that k can take.

[1]

For this least value of k

(ii) write down the range of f,

[1]

(iii) find $f^{-1}(x)$,

[2]

-------Marking Scheme------

(i)	1	B1	Not a range for k , but condone $x = 1$ and $x = 1$
(ii)	f -5	B1	Not <i>x</i> , but condone <i>y</i>
(iii)	Method of inverse	M1	Do not reward poor algebra but allow slips
	$1 + \sqrt{x+5}$	A1	Must be $f^{-1} =$ or $y =$

2.6

The function f is such that $f(x) = 2 + x\sqrt{3}$ for $4 \le x \le 28$.

- (i) Find the range of f. [2]
- (ii) Find $f^2(12)$. [2]
- (iii) Find an expression for $f^{-1}(x)$. [2]

The function g is defined by $g(x) = \frac{120}{x}$ for $x \ge 0$.

(iv) Find the value of x for which gf(x) = 20. [3]

------Marking Scheme-----

(i)	3 < f < 7	B1,B1	If B0 then SC1 for $3 < f < 7$	
(!!)	£(10) — 5		$f^2(x) = \left(\left(\frac{x^2}{x^2} \right) + 2 \right) + 2 $	

(ii)
$$f(12) = 5$$
 $g(x) = 5$ $f(x) = 5$ $f(x$

(iii) Clear indication of method
$$f^{-1}(x) = (x-2)^2 + 3$$
 M1 condone $y = (x-2)^2 + 3$

(iv)
$$gf(x) = \frac{120}{\sqrt{(-2)} + 2}$$
 B1

Attempt to solve their gf
$$(x) = 20$$
 M1
$$x = 19$$
 A1

Answer only one of the following two alternatives.

EITHER

Functions f and g are defined for $x \in \mathbb{R}$ by

f:
$$x \mapsto 3x - 2$$
, $x \neq \frac{4}{3}$,
g: $x \mapsto \frac{4}{2-x}$, $x \neq 2$.

- (i) Solve the equation gf(x) = 2. [3]
- (ii) Determine the number of real roots of the equation f(x) = g(x). [2]
- (iii) Express f^{-1} and g^{-1} in terms of x. [3]
- (iv) Sketch, on a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, stating the coordinates of the point of intersection of the two graphs. [3]

------Marking Scheme------

12 EITHER [11]	(i)	$gf(x) = \frac{4}{2 - (3x - 2)}$	B1
		Solve $\frac{4}{4-3x} = 2$ [or solve fg(x) = 3 $\left(\frac{4}{2-x}\right) - 2 = 2$]	M1
		$\Rightarrow x = 2/3$	A1
	(ii)	$f(x) = g(x) \Rightarrow 3x - 2 = \frac{4}{2 - x} \Rightarrow 3x^2 - 8x + 8 = 0$	
		Discriminant = $64 - 96 < 0$ \Rightarrow No real roots	M1 A1
	(iii)	$f^{-1}: x \mapsto (x+2) \div 3$	B1
		$y = 4 / (2 - x)$ \Rightarrow $x = 2 - 4/y$ \Rightarrow $g^{-1} : x \mapsto 2 - 4/x$	M1 A1
	(iv)		B1 B1
		Lines intersect at (1, 1)	B1

2.8

The function f is defined by $f: x \mapsto |x^2 - 8x + 7|$ for the domain $3 \le x \le 8$.

- (i) By first considering the stationary value of the function $x \mapsto x^2 8x + 7$, show that the graph of y = f(x) has a stationary point at x = 4 and determine the nature of this stationary point. [4]
- (ii) Sketch the graph of y = f(x). [2]
- (iii) Find the range of f. [2]

The function g is defined by g: $x \mapsto |x^2 - 8x + 7|$ for the domain $3 \le x \le k$.

(iv) Determine the largest value of k for which g^{-1} exists. [1]

Let
$$y = x^2 - 8x + 7$$
 dy/dx = $2x - 8 = 0$ at $x = 4$

M1

 $d^2y/dx^2 = 2$::min at x = 4

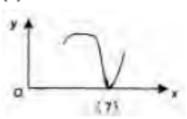
A1

OR via completing the square: $y = (x - 4)^2 - 9 \Rightarrow \min -9$ at x = 4

f(x) has maximum at x = 4, corroborated by argument re reflection of -9 or by graph

B2, 1, 0

(ii)



B2, 1, 0

Judge by shape, unless values clearly incorrect.

Ignore curve outside domain.

Cusp needed at x-axis.

Accept straight line for right-hand arm, but curvature, if shown, must be correct.

iii)
$$0 \le f(x) \le 9$$
 [condone <]

B1

В1

Solve the equation |2x + 10| = 7.

[3]

Marking Scheme

-1.5	B1
Solve $2x + 10 = -7$ or $(2x + 10)^2 = 49$	M1
-8.5	A1
	[3]