Smart Exam Resources

CAMBRIDGE LOWER SECONDARY CHECKPOINT PRACTISE QUESTIONS -MARKSCHEMS

Subject: Chemistry- Stage - 9

Topic: Density Set-1-qp-ms

1 Fig. 1.1 shows a cube.

Fig. 1.1

(a) The mass of the cube is 21.6 g.

Calculate the density of the cube.

State the formula that you use and show your working.

formula

working

[3]

(a) volume = 8 cm³; density = mass/volume; 21.6/8 = 2.7 g/cm³; [3]

2	The volume of the elephant is 5 m ³ . Its mass is 5000 kg.	
	Calculate the density of the elephant.	
	State the formula that you use and show your working.	
	formula	
	working	
		[2]

density = mass / volume = $5000 / 5 = 1000 \text{ kg/m}^3$;

[2]

3	The load being lifted by the crane is a container full of sea water.
	The volume inside the container is 5000 dm ³ . The density of sea water is 1025 kg/
	m ³ . Calculate the mass of sea water being lifted.
	State the formula you use and show your working.
	formula
	working
	Les FOI
	mass = kg [3]

\rightarrow		
	density = mass / volume ; unit change noted: $5000 \text{ dm}^3 = 5 \text{ m}^3$; mass (= volume x density) = $5 \times 1025 = 5125 \text{ (kg)}$;	3

4	Describe how the density of an irregular object such as a bell could be determined.
	[4]

measure mass with, scales / balance;

measure volume;

displacement method for measuring volume described;

density = mass / volume;

[4]

TI	he mass of the toy bird is 7.5 g and its volume is 3.0 cm ³ .	
(i)	Suggest how you could measure the volume of the bird.	
		[2]
(ii)	Calculate the density of the bird.	
	Show your working and state the formula that you use.	
	formula used	
	working	
		[2]

5

(i) use measured volume of water; submerge toy and calculate change in level/volume of water displaced;

[2]

density = mass/volume; 7.5/3.0 = 2.5 g/cm³; (ii)

[2]

6	The volume of the wood used to construct the longship was 9 m ³ .	
	If the density of the wood was 800 kg/m³, calculate the mass of the wood used.	
	State the formula that you use and show your working.	
	formula	
	working	
		[2]

density = mass/volume *or* (mass =) density x volume ; mass = 800 x 9 = 7200 kg ;

[2]

[Total: 7]