SMART EXAM RESOURCES # **SUBJECT: PHYSICS** TOPIC: WORK / ENERGY /POWER SET-12-QP-MS | 1 | Water is | held behind a dam in a hydroelectric power scheme. | | |---|----------------|---|-----| | | (c) Hyd | droelectric energy is a renewable form of energy. | | | | | State one disadvantage of hydroelectric power schemes. | | | | | | [1] | damage to habitats (for fish) / construction is expensive / droughts / flood risk if dam bursts IGCSE PHYSICS TOPIC QUESTIONS **B1** A train of mass 1.8×10^5 kg is at rest in a station. At time t = 0, the train begins to accelerate along a straight, horizontal track and reaches a speed of $20 \, \text{m/s}$ at $t = 15 \, \text{s}$. The train continues at a speed of $20 \, \text{m/s}$ for $10 \, \text{s}$. At t = 25 s, the driver applies the brakes and the resistive force on the train causes it to decelerate uniformly to rest in a further 24 s. Fig. 4.1 is an incomplete distance—time graph for this journey. Fig. 4.1 (a) Complete Fig. 4.1 by drawing: (i) a line to represent the motion of the train between $$t = 15$$ s and $t = 25$ s [1] (ii) a curve to represent the motion of the train between $$t = 0$$ and $t = 15$ s. [1] (b) Calculate the kinetic energy of the train between t = 15 s and t = 25 s. MM. Stratie Kairlie South Ces. | (a)(i) | straight line begins at (15 s, 120 m) and continues to end of given line | B1 | |---------|---|----| | (a)(ii) | curve with increasing gradient from origin to beginning of candidate's (a)(i) | B1 | | (b) | $(E_k =) \frac{1}{2}mv^2$ in any form | C1 | | | $\frac{1}{2} \times 1.8 \times 10^5 \times 20^2$ | C1 | | | $3.6 \times 10^7 \mathrm{J}$ | A1 | 3 Fig. 2.1 shows a wooden trolley of mass 1.2kg at rest on the rough surface of a bench. Fig. 2.1 A ball of mass 0.52g travels horizontally towards the trolley. The ball embeds itself in the wood of the trolley. The trolley moves with an initial speed of 0.065 m/s. - (a) Calculate: - (i) the impulse exerted on the trolley (ii) the speed of the ball as it hits the trolley. **(b)** As the trolley moves across the rough surface, it slows down and stops. down. Explain, in terms of the work done, the energy change that takes place as the trolley slows[3] [Total: 7] | Question | Answer | Marks | |----------|--|-------| | (a)(i) | 0.078 N s or 0.078 kg m/s | A2 | | | $(I =) m_1(\Delta) v_1$ in any form or 1.2 × 0.065 | C1 | | (a)(ii) | 150 m/s | A2 | | | $v_b = (m_t + v_t) / m_b$ in any form or initial momentum = final momentum or $1.2(0052) \times 0.065 / 0.00052$ or $0.078(0338) / 0.00052$ | C1 | | (b) | work done against / due to / because of friction or kinetic energy (of trolley) used to do work | B1 | | | kinetic energy decreases (to zero) | B1 | | | thermal energy produced | B1 | 4 Fig. 2.1 shows water stored in a reservoir behind a hydroelectric dam. Fig. 2.1 (not to scale) (c) The water flows to the turbine through a pipe of constant cross-sectional area. | Explain why the the pipe. | e kinetic energy | of the water i | n the pipe ren | nains constant as | s it flows through | |---------------------------|------------------|----------------|----------------|-------------------|--------------------| [2] | | speed (of water) remains constant | B1 | |---|----| | otherwise density would decrease or gaps would appear in the water or volume / density does not change or liquids incompressible or water enters / leaves at constant rate or quantity of water remains constant | B1 | **5** Fig. 1.1 shows an electrically powered bicycle. Fig. 1.1 Consider this bicycle compared to a small motorcycle. State **two** environmental benefits of the electrically powered bicycle. | 1 | | |---|---------| | | | | | | | 2 | | | | [2 | | | <u></u> | | any two from: | B2 | |--|----| | less noise OR no noise less OR no air / gaseous pollution (from the bicycle) OR does not produce acid rain (the bicycle) uses no / less fossil fuel does not contribute to greenhouse effect OR does not release CO₂ | | | 6 | State one advantage and one disadvantage of generating electrical power in nu power stations compared with electrical power generated using wind turbines. | clear | |---|--|-------| | | advantagedisadvantage | | | | | [2 | | | | | | advantage – one from: Continuous supply of energy not affected by the weather OR not affected by wind strength produces large amounts of energy | В1 | |---|----| | disadvantage – one from: • resources finite / not renewable • cost / difficulty of building / cost / difficulty of decommissioning • danger if any leak of radiation • produces hazardous / dangerous waste OR difficulty of storage of used radioactive material OR nuclear waste must be stored for a long time | B1 |