SMART EXAM RESOURCES SUBJECT: PHYSICS

TOPIC: DISTANCE-TIME GRAPH SET-3-QP-MS

1 A car of mass *m* is travelling along a straight, horizontal road at a constant speed *v*.

At time t = 0, the driver of the car sees an obstruction in the road ahead of the car and applies the brakes.

(a) E 	Explain what is meant by deceleration.	
		[2
(b) S	Suggest one reason why the car does not begin to decelerate at $t = 0$.	
		[1
(c) F	Fig. 1.1 is the distance—time graph for the car from $t = 0$.	
	distance/m	
	40-	
	20-	
	0 1 2 3 4 5	
	time/s Fig. 1.1	
(i	i) State the property of a distance–time graph that corresponds to speed.	[4
(ii	i) Using Fig. 1.1, determine the initial speed v of the car.	۱]

 $V = \dots$ [2]

(d)	Whe	en the car is decelerating, there is a constant resistive force F on the car due to the ses.					
	The deceleration of the car is greater than $\frac{F}{m}$ and is not constant.						
	Ехр	lain why:					
	(i)	the deceleration of the car is greater than $\frac{F}{m}$					
		[1]					
	(ii)	the deceleration is not constant.					
		[2]					
		[Total: 9]					

MARK SCHEME:

PUBLISHED

Question	Answer	Marks
(a)	negative acceleration or decrease in velocity	B1
	change in velocity per unit time or rate of change of velocity	B1
(b)	delay in applying brakes or (human) reaction time or foot not removed from accelerator	B1
(c)(i)	gradient or slope	B1
(c)(ii)	20.5 m/s ≤ answer ≤ 23.5 m/s	A2
	the coordinates at one point on curve (e.g. $(0.50, 11)$) and (upper) time coordinate $\leq 1.0 \text{ s}$	C1
(d)(i)	air resistance / air friction acts on the car	B1
(d)(ii)	air resistance / resultant / resistive force decreases and as speed decreases / car decelerates	A2
	air resistance / resultant / resistive force decreases / changes	C1

A train of mass 1.8×10^5 kg is at rest in a station. At time t = 0, the train begins to accelerate along a straight, horizontal track and reaches a speed of $20 \,\text{m/s}$ at $t = 15 \,\text{s}$. The train continues at a speed of $20 \,\text{m/s}$ for $10 \,\text{s}$.

At t = 25 s, the driver applies the brakes and the resistive force on the train causes it to decelerate uniformly to rest in a further 24 s.

Fig. 4.1 is an incomplete distance—time graph for this journey.

Fig. 4.1

- (a) Complete Fig. 4.1 by drawing:
 - (i) a line to represent the motion of the train between t = 15 s and t = 25 s [1]
 - (ii) a curve to represent the motion of the train between t = 0 and t = 15s. [1]

MARK SCHEME:

(i)	straight line begins at (15 s, 120 m) and continues to end of given line	B1
(ii)	curve with increasing gradient from origin to beginning of candidate's (a)(i)	B1