SMART EXAM RESOURCES TOPIC QUESTIONS: NUCLEIC ACID AND PROTEIN

SYNTHESIS

SUB-TOPIC: DIAGRAM BASED QUESTIONS SET-2-QP-MS

(a) Fig. 4.1 shows part of a DNA molecule.

Fig. 4.1

	Γ <i>4</i> 1
Use Fig. 4.1 to explain now the structure of many differs from the structure of DNA.	

MARK SCHEME:

m	RNA	max 4
1 2 3 4	single-stranded; no hydrogen bonding / only DNA has hydrogen bonding; no base pairs / only DNA has base pairs; uracil and not thymine / DNA has thymine instead of uracil; treat as neutral T and U, look for complete term	
5 6 7 8	ribose not deoxyribose; detail, e.g. –H and not –OH on C2; short(er) / DNA is longer; A smaller / bigger not a helix;	

2

Fig. 4.1 is a diagram that shows how catalase is produced in cells.

Fig. 4.1

(i) name

process A	
molecule B	
structure C	
sequence of bases D	[4

MARK SCHEME:

(a) (i) A transcription;

B tRNA / transfer RNA;

C ribosome; A subunit of ribosome / ribosomal subunit

treat 70S / 80S or small / large as neutral

Danticodon; [4]

Protein synthesis requires ribosomes, mRNA, tRNA, amino acids and enzymes.

Fig. 4.1 is a diagram of a molecule of tRNA.

Fig. 4.1

(a)	Name the bond labelled P .
	[1
(b)	Use Fig. 4.1 to describe the role of tRNA in protein synthesis.
	You may annotate Fig. 4.1 to help your answer.
	מו

MARK SCHEME:

(a) hydrogen (bond); [1]

- (b) three from
 - 1 tRNA carries an amino acid to ribosomes;
 - 2 (each type of) tRNA carries a specific amino acid;
 - 3 anticodon (on tRNA) binds to codon on mRNA; anticodon may be labelled on Fig. 4.1
 - 4 tRNA molecules hold amino acids, in place/in P and A sites (of ribosome), for peptide bond formation;
 - 5 tRNA molecules, reused/described; I tRNA leaves ribosome unqualified
 - 6 AVP; e.g. amino acid is attached to ACC region I examples of complementary base pairing between codon and anticodon

[max 3]