SMART EXAM RESOURCES 9702 PHYSICS TOPIC QUESTIONS

TOPIC: PHYSICAL QUANTITIES AND UNITS SUB-TOPIC: SCALARS AND VECTORS SUB-SUB-TOPIC: VECTOR DIAGRAMS SET-3-QP-MS

f 1 A weight of 7.0 N hangs vertically by two strings AB and AC, as shown in Fig. 2.1.

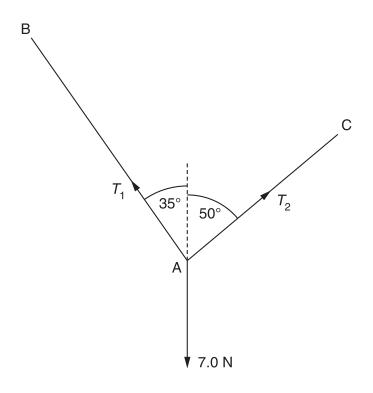


Fig. 2.1

For the weight to be in equilibrium, the tension in string AB is T_1 and in string AC it is T_2 .

On Fig. 2.1, draw a vector triangle to determine the magnitudes of T_1 and T_2 .

$$T_1 = \dots N$$

$$T_2 = \dots N$$
[3]

MARKING SCHEME:

triangle drawn with correct shape (incorrect arrows loses this mark)	B1	
$T_1 = 5.4 \pm 0.2 \mathrm{N}$	B1	
$T_2 = 4.0 \pm 0.2 \mathrm{N}$	B1	[3]

A climber is supported by a rope on a vertical wall, as shown in Fig. 2.1.

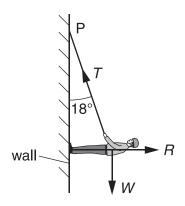


Fig. 2.1

The weight W of the climber is 520 N. The rope, of negligible weight, is attached to the climber and to a fixed point P where it makes an angle of 18° to the vertical. The reaction force R acts at right-angles to the wall.

The climber is in equilibrium.

(b) Complete Fig. 2.2 by drawing a labelled vector triangle to represent the forces acting on the climber.

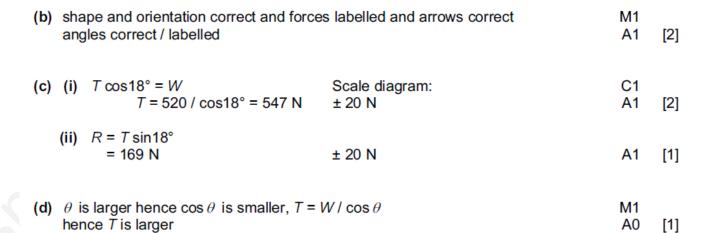


Fig. 2.2

[2]

(c)	Resolve forces or use your vector triangle to calcu	ulate
	(i) the tension T in the rope,	
	(ii) the reaction force R.	T = N [2]
	F	₹= N [1]
(d)	The climber moves up the wall and the angle the re Explain why the magnitude of the tension in the re	-
		[1]

MARKING SCHEME:

An object B is on a horizontal surface. Two forces act on B in this horizontal plane. A vector diagram for these forces is shown to scale in Fig. 1.1.

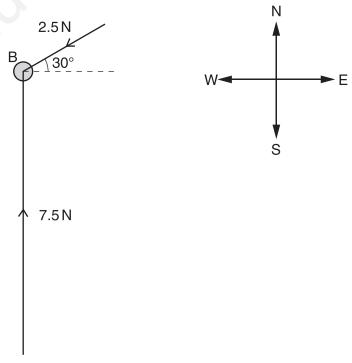


Fig. 1.1

A force of 7.5 N towards north and a force of 2.5 N from 30° north of east act on B. The mass of B is 750 g.

- (i) On Fig. 1.1, draw an arrow to show the approximate direction of the resultant of these two forces. [1]
- (ii) 1. Show that the magnitude of the resultant force on B is 6.6 N.

[1]

	2. Calculate the magnitude of the acceleration of B produced by this resultant force.		
		$magnitude = \dots ms^{-2} [2]$	
(iii)		ermine the angle between the direction of the acceleration and the direction of the N force.	
		angle =° [1]	

MARKING SCHEME:

(1)		oroximately 5° to 40° to west of north	A1	[1]
(ii)	1.	correct vector triangle or working to show magnitude of resultant force = 6.6 N allow 6.5 to 6.7 N if scale diagram	M1	[1]
	2.	magnitude of acceleration = 6.6 / 0.75 [scale diagram: (6.5 to 6.7) / 0.75]	C1	
		= 8.8 m s^{-2} [scale diagram: $8.7 - 8.9 \text{ m s}^{-2}$]	A1	[2]
(iii)	19°	[use of scale diagram allow 17° to 21° (a diagram must be seen)]	B1	[1]

Two forces of magnitude 6.0 N and 8.0 N act at a point P. Both forces act away from point P and the angle between them is 40°.

Fig. 1.1 shows two lines at an angle of 40° to one another.

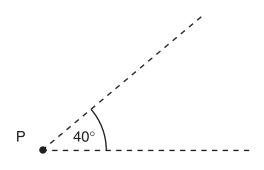


Fig. 1.1

On Fig. 1.1, draw a vector diagram to determine the magnitude of the resultant of the two forces.

magnitude of resultant = N [4]

MARK SCHEME:

(b)	diagram has correct shape	M1	
	with arrows in correct directions	A1	
	resultant = 13.2 ± 0.2 N (allow 2 sig. fig)	A2	[4]
	(for 12.8 → 13.0 and 13.4 → 13.6, allow 1 mark)		
	(calculated answer with a correct sketch, allow max 4 marks)		
	(calculated answer with no sketch - no marks)		