SMART EXAM RESOURCES SUBJECT:COORDINATED SCIENCES [PHYSICS]

PAPER 4 TOPIC: MOTION

SUB-TOPIC: DENSITY/MASS/VOLUME SET 4 QP-MS

The volume of the ethanol in the thermometer at 25 °C is 2.00 cm³ and the density of the ethanol is 0.78 g/cm³.

When the thermometer is cooled to 3 °C, the volume decreases to 1.95 cm³.

Calculate the density of the ethanol at 3 °C.

density of ethanol =g/cm³ [3]

_		
	$(m =) \rho \times V \text{ OR } 0.78 \times 2.0 \text{ OR } 1.56 \text{ (g)};$ $(\rho =) m/V \text{ OR } 1.56/1.95;$ $(\rho =) 0.80 \text{ (g/cm}^3);$	3

Fig. 6.1 shows a marble staircase made up of 17 steps.

Fig. 6.1

(a) Fig. 6.2 shows the dimensions of one of the marble steps which has a mass of 72 kg.

Fig. 6.2

(i) Calculate the density of the marble step.

Question	Answer	Marks
(a)(i)	$(V =) 0.16 \times 0.20 \times 0.90 \text{ or } 0.0288 \text{ (m}^3);$ $(\rho =) \text{ m/V or } 72 / 0.0288;$ $2500 \text{ (kg/m}^3);$	3

Fig. 12.3 shows the dimensions of the glass block.

Fig. 12.3

The density of glass is $2.80 \,\mathrm{g/cm^3}$.

Use Fig. 12.3 to calculate the mass of the glass block.

	ll.
(volume =) 144 (cm³); (mass =) 2.8(0) × 144; (mass =) 403 (g);	3

4	The volume of the container is $0.050\mathrm{m}^3$.
	The density of the radon gas is 9.7 kg/m ³ .
	Calculate the weight of the radon gas in the container.
	The gravitational field strength, g , is 10 N/kg.

weight = N [3]

	THE COLUMN TO BE A SECURE ASSESSMENT OF THE OWNER OWN		
(m =) ρV ; 9.7 × 0.05) 0.485 (kg); ϵmg = 0.485 × 10 =) 4.9 (N);	600	3

5	When the meteoroid lands on Earth, it is called a meteorite.
•	A small meteorite has a mass of 1720 g and a volume of 200 cm ³ .
	Calculate the density of the meteorite.

density = g/cm³ [2]

	1
(density =) mass / volume or 1720 / 200 (<i>in any form</i>); 8.6(0) (g / cm³);	2